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Virtual reality (VR) allow users to feel as though they are really present in a computer-

generated virtual environment (VE). A key component of an immersive virtual experience is the

ability to interact with the VE, which includes the ability to explore the virtual environment.

Exploration of VEs is usually not straightforward since the virtual environment is usually shaped

differently than the user’s physical environment. This can cause users to walk on virtual routes

that correspond to physical routes that are obstructed by unseen physical objects or boundaries of

the tracked physical space.

In this dissertation, we develop new algorithms to understand how and enable people to

explore large VEs using natural walking while incurring fewer collisions with physical objects

in their surroundings. Our methods leverage concepts of alignment between the physical and

virtual spaces, robot motion planning, and statistical models of human visual perception. Through

a series of user studies and simulations, we show that our algorithms enable users to explore

large VEs with fewer collisions, allow us to predict the navigability of a pair of environments

without collecting any locomotion data, and deepen our understanding of how human perception

functions during locomotion in VR.
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Introduction & Background
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Chapter 1: Overview

Virtual reality (VR) is a system that allows the user to experience and interact with a

computer-generated digital environment [101]. VR is an interesting technology because it creates

a feeling of presence, the feeling that the user is really in the virtual environment (VE) that they

are viewing [178]. Key to this feeling that one is actually in the VE is the ability to interact with

the VE—the user’s actions in VR create a change in their experience of the virtual surroundings.

For example, picking up a virtual basketball and throwing it should create a plausible dynamic

response that causes the ball to bounce away according to the laws of physics and the geometry

of the virtual objects that make up the VE.

One important aspect of interaction is the ability to explore the VE. The ability to actively

explore an environment (i.e., using one’s own volition) leads to better acquisition of route and

survey knowledge in the environment [36]. Furthermore, it has been shown that the ability to

explore an environment using natural walking contributes significantly to a user’s feeling of

presence in VR [209] and their performance on search and wayfinding tasks [84, 162]. Here,

we define “natural walking” as step-driven locomotion that does not use treadmills or other

mechanical devices, makes use of the entire gait cycle, and, ideally, is perceived by the user as

identical to how they walk in the real world while not in VR [116, 188]. However, a fundamental

problem with natural walking in VR is that the user’s physical movements are usually mapped
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one-to-one to their virtual movements, which means that an unobstructed path in the virtual world

may correspond to an obstructed path in the physical environment (see Figure 1.1).

Figure 1.1: An example of the VR locomotion problem. The user wishes to travel in a straight
line in the direction they are facing (dashed teal line). In the virtual environment (right), this
corresponds to a valid path that takes the user into the virtual operation room. However, in the
physical environment (left), this desired path is invalid because it yields a collision with the table
front of them. Locomotion interfaces avoid these collisions by allowing the user to move through
the virtual environment without requiring them to carry out the same movements in the physical
space.

Locomotion interfaces (LIs) are techniques that mitigate this problem by changing the

mapping between the user’s physical and virtual movements or otherwise allowing users to

control their virtual movements (e.g., via a joystick) [52, 188]. Indeed, researchers have invested a

significant amount of work into developing LIs that are comfortable, easy to use, and effective for

moving the user through the VE. Each interface comes with different advantages and disadvantages

in terms of its learning curve, the level of presence afforded, and its efficiency. In this dissertation,

we focus on locomotion interfaces that allow users to explore VEs using natural walking due

to the benefits it provides to the user experience. Most of the research in natural walking

interfaces for VR build upon a technique known as redirected walking (RDW) [157, 158], which
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works by subtly manipulating the mapping between the user’s physical and virtual movements

which allows the VR system to steer the user away from physical obstacles in their surroundings

that they cannot see. There are three main questions that the majority of natural walking (and

especially RDW) research has studied:

1. How severely can we manipulate the mapping between a user’s physical and virtual motions

before the discrepancy in their self-motion signals becomes detrimental to their virtual

experience?

2. What is the optimal direction to steer a user in the physical environment to avoid as many

collisions with physical obstacles as possible?

3. For a given pair of physical and virtual environments, what is the optimal natural walking

interface that yields the best user experience?

Note that this third question has received comparatively much less attention than the first two

questions.

In this dissertation, we develop methods that make progress on all three of the above

questions. We focus on computational approaches to these questions since computational methods

have many benefits for modeling, simulating, and understanding complex systems and large

amounts of data [90, 171] For example, by redefining the redirection problem using a rigorous

mathematical framework (Chapter 4), our RDW algorithms can be more readily applied to a

wide range of scenarios as long as the correct inputs (e.g., walking trajectories, environment

layouts, human factors) can be fed into our algorithms. Indeed, prior work has demonstrated that

redirection (i.e., simultaneous, decoupled locomotion in a real and virtual environment) exhibits

complex behaviors akin to chaotic systems [81] and has shown the usefulness of simulations for
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measuring the efficacy of different redirection algorithms [10]. In an effort to develop computational

methods for VR locomotion, we build upon the concept of alignment [207] as a way of comparing

the similarity of the structure of the physical and virtual environments. To achieve this, we

introduce environment similarity metrics that are precisely defined based on the geometric structure

of the environments. We also adapt techniques from robot motion planning to define a rigorous

mathematical framework that allows us to reason about VR locomotion in generalized, abstract

terms. This framework enables us to develop locomotion interfaces that can operate in any

environment as long as particular constraints are fulfilled. Furthermore, we show that this framework

allows us to better understand and make predictions about locomotion in a pair of physical and

virtual environments without the need to run user studies to collect locomotion data. Additionally,

we measure the correlation between a user’s physiological signals (gaze and postural stability)

and the intensity of VE manipulations introduced by redirected walking (RDW), a popular natural

locomotion interface. To evaluate my methods, we use both quantitative and qualitative metrics.

This includes statistical models of human perception, quantifications of distance walked and

frequency of collisions in VR, presence and simulator sickness questionnaires, and semi-structured

interviews with participants.

1.1 Main Contributions

The main contributions of this thesis are:

1. Improved redirected walking algorithms based on alignment and distractors: We

develop two new algorithms that steer the user away from unseen physical obstacles with a

higher success rate than existing state-of-the-art algorithms. Existing algorithms typically
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do not consider the layout of the virtual environment when deciding where to steer the user

in the physical space. We show that by considering the structure of both the physical and

virtual environments together, one can develop a new kind of redirection algorithm that

can avoid more collisions than algorithms that do not consider the structure of the virtual

environment, in both static and dynamic scenes. Our algorithms leverage alignment, the

concept of measuring the similarity of the user’s state (in our case, proximity to objects)

in the physical and virtual environments, to approximate the likelihood that the user will

collide with a physical object. Once an alignment score has been computed, we use this

metric to steer the user to a safer physical location that minimizes the discrepancy between

the user’s proximity to physical and virtual objects.

Next, we develop a third algorithm that formalizes the usage of distractors, any element

of the virtual environment that aims to capture the user’s attention [148], for improved

collision-avoidance during VR locomotion. We describe a framework for how distractors

can be implemented into any natural-walking locomotion interface as long as the VR

system can compute regions of the physical space that the user can safely navigate towards

and a feasible distractor behavior can be generated that guides the user to that safe physical

region. We demonstrate the viability of this framework through a simple implementation

and study the effects of distractor behavior on the effectiveness of this framework.

2. A novel, rigorous formulation of the redirected walking problem: Many redirection

algorithms have been based on simple, hand-designed heuristics based on intuitions about

the situations in VR walking that are typically challenging (e.g., small physical spaces).

This decision to use heuristics limits an algorithm’s ability to perform well across a wide
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range of physical and virtual environments since it is likely that the chosen heuristics do

not cover the vast range of possible environments and configurations the user may be in.

Taking inspiration from robot motion planning, we reformulated the redirected walking

problem in terms of the user’s configuration in either environment and their trajectory

through the virtual environment. We then show how this framework highlights geometric

and perceptual constraints that tend to make collision-free navigation difficult. Two of the

redirection algorithms introduced in this thesis are based on this mathematical framework.

3. A new metric to quantify navigability for virtual reality: A large challenge with VR

locomotion is that it is difficult to know how much collision-free navigation is possible

for a given physical and virtual environment without conducting a user study. This is

because quantifying the navigability of a pair of environments usually requires gaining an

understanding of the types of virtual paths the user is likely to travel on, which determines

how feasible it is for the user to safely navigate through their corresponding physical

environment. We introduce, for the first time, a metric that approximates the navigability

of a given pair of physical and virtual environments without using any user locomotion

data (real or simulated). Our metric is based purely on the geometric layout of the two

environments. Our metric is built on the observation that locomotion is a primarily local

problem and that by quantifying the similarity of the local structure of uniformly-sampled

points across the two environments, we can approximate the likelihood that a user will

incur a collision for any given starting positions in the physical and virtual environments.

We validate our metric using large-scale simulations and find that our metric is correlated

with the navigability of environment pairs.
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4. A new study of the relationships between redirection and physiological signals: Redirected

walking works by injecting small, subtle rotations and translations into the user’s virtual

camera trajectory as they move around in their physical space. An important component

of successfully deploying a redirected walking system is ensuring that these rotations

and translations are never too large that the user consciously notices them. If the user

notices the applied redirection, it is likely that it will interfere with the quality of their

virtual experience and may make them experience simulator sickness [104]. Traditional

methods for estimating a user’s sensitivity to redirection employ psychophysical threshold

estimation techniques which are not scalable since they require large amounts of time, can

cause users to feel fatigued or bored, and do not generalize well to the broader population

(i.e., there are individual differences in sensitivity). We conduct a study that measures

perceptual thresholds for RDW rotation gains and examines the relationship between the

strength of these gains and physiological signals generated by the user. In particular, we

show that the strength of the gain is correlated with the stability of the user’s gaze and

posture, which opens the door for new methods of RDW sensitivity estimation that do not

require long calibration times like traditional psychophysical methods do.

1.2 Overview of Dissertation

This thesis presents new methods for understanding locomotion in virtual reality and for

developing natural walking-based locomotion interfaces. We organize the thesis as follows:

• Chapter 2—Background: We provide a high-level overview of the human perceptual

system and locomotion interfaces for virtual reality. In particular, we detail the basic
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mechanics of how visual perception works and how it contributes to a user’s perception of

self-motion through their environment. We also provide details on the basics of locomotion

interfaces for virtual reality, with a focus on methods that enable users to explore their

virtual surroundings using natural walking.

• Chapter 3—Alignment-Based Redirection: The first contribution of this thesis is based

on the observation that collision-free locomotion in VR does not require the physical and

virtual environments to have globally similar layouts. That is, regions of local similarity

can yield collision-free paths as long as the user’s proximity to objects is similar between

the physical and virtual environments. Furthermore, this similarity in proximity is only

necessary in the direction of travel. Based on this observation, we designed a redirection

algorithm that first quantifies the alignment of the user’s state in each environment (i.e., the

similarity of the user’s physical and virtual positions in terms of proximity to objects) and

then applies redirection to steer the user towards a physical location that is more similar to

their virtual location. Interestingly, we find that by applying redirection only proportional

to the magnitude of the differences in proximity to physical and virtual objects, we are

able to achieve improved collision avoidance while also steering the user with weaker

redirection gains compared to state-of-the-art RDW algorithms, which may decrease the

chance that the user feels symptoms of simulator sickness. This finding goes against

a common rule-of-thumb that stronger redirection gains yield better collision-avoidance

performance.

• Chapter 4—Visibility-Based Redirection: Next, we present a novel, mathematical formulation

of the RDW problem based on concepts robot motion planning. In particular, we detail how
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the redirection problem can be described using the notions of configuration spaces (which

describe the user’s position and orientation in an environment) and trajectories (which are

represented as an ordered set of user configurations in an environment). Building upon this

framework, we use visibility polygons to represent the local structure of the environment

around the user’s current position. We show that this representation is useful for computing

regions of space where a collision is possible without needing to know what the user’s

future trajectory is, meaning no trajectory prediction is required. Using our mathematical

framework and visibility polygons, we develop a new redirection algorithm that achieves

improved results over state-of-the-art algorithms (including our alignment-based algorithm

described in Chapter 3) in both static and dynamic environments.

• Chapter 5—Distractor-Based Redirection: In this chapter, we present a natural walking

interface for VR that integrates distractors, elements of the virtual environment that capture

the user’s attention [148], to help guide the user away from collisions with physical objects.

Since VR is an interactive technology, users often interact with elements of their virtual

surroundings (usually things like virtual agents or objects) as part of their virtual experience.

Based on this observation, we designed a locomotion framework that directly uses distractors

as a guiding agent to steer the user away from imminent physical collisions in a naturalistic

way that does not interfere with their virtual experience (either through overt reorientation

interventions or motions injected into the virtual camera). Our framework functions by

computing safe zones of the physical environment, which are regions of the physical space

that the user is able to safely navigate to and are not likely to lead to a collision in the

near future. Once an appropriate safe zone has been computed and the user interacts with
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a virtual distractor, our system generates a distractor behavior that is natural (within the

context of the virtual experience) and will guide the user towards the safe zone as long as

the user continues to interact with the virtual distractor. We implement a simplified version

of our framework and demonstrate its effectiveness compared to a redirection system with

naı̈ve distractor behavior. Furthermore, we study how changes to the distractors’ behavior

impact our ability to guide the user away from collisions with physical objects.

• Chapter 6—Quantifying Environment Navigability for Natural Walking in Virtual

Reality: One challenge for researchers who study virtual reality locomotion navigation

is that it is difficult to predict how easily a user will be able to explore a given virtual

environment without conducting a user study. In this chapter, we develop, for the first time,

a metric that approximates the navigability of a pair of physical and virtual environments

purely based on the geometric layout of the environments (i.e., our metric does not require

users’ navigation trajectories as an input). Our metric is based on the observation that

natural walking behavior is largely determined by the structure of the user’s local surroundings.

Therefore, a method that can sample and quantify the similarity of locations in the physical

and virtual environments will likely be correlated with the ease of collision-free locomotion

in those environments. We present details on how such a metric can be computed, taking

inspiration from geometric shape similarity metrics and robot navigation, and show through

extensive user studies and simulations that our metric is correlated with how far a user

is able to walk in an environment before they incur a collision with an unseen physical

obstacle.

• Chapter 7—Perceptual Sensitivity and Physiological Signals of Tolerance to Redirection:
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When studying redirected walking systems it is important to consider not only the design of

redirection algorithms but also the user’s subjective perceptual sensitivity to the rotations

and translations that RDW introduces into their virtual camera motion. A crucial factor

to consider when deploying a RDW algorithm is to make sure that the algorithm does not

apply redirection gains that are too strong for the user such that they notice the injected

motions and feel symptoms of simulator sickness, which will detract from their virtual

experience. Traditional methods to estimate this sensitivity to injected motions are based

on psychophysics and often entail long measurement processes that are tiring for the user

and cannot be employed while the user is in a virtual experience (e.g., while the user is

experience a virtual job simulator). In this chapter, we conduct a study that measures

sensitivity to RDW rotation gains under light and dark conditions and correlates users’

sensitivity to patterns in their physiological signals. In particular, we show that increased

rotation gains are positively correlated with postural and gaze instability. This finding

opens the door to the possibility of using physiological signals as a measure of user comfort

during redirected locomotion, potentially bypassing the long measurement process required

by traditional psychophysical methods.

• Chapter 8—Conclusion, Limitations, and Future Work: In this chapter, we provide a

summary of the results, discuss its limitations, and discuss avenues for future work in this

area. The overall goal with this thesis is to improve our understanding of the dynamics of

natural walking in virtual reality and develop algorithms and metrics that improve users’

ability to explore virtual environments using natural walking. In an effort to do this, we

introduced new algorithms for natural walking in VR, developed new mathematical tools to
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think about and analyze virtual locomotion, and provided new insight into the relationship

between perception and physiology during virtual locomotion. However, our work has

limitations relating to the usage of simulation-based methods and how likely some of our

results are to generalize to real users, the computational costs of our navigability metric,

and the generalizable of the results on physiology to more representative natural walking

scenarios and tasks. Future work in this area should aim to improve upon these limitations

by building more complex models of human locomotion and perception, developing data-

driven methods for estimating environment navigability, and conducting large-scale user

studies to better understand the success and failure cases of our locomotion interfaces.
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Chapter 2: Background

In this section, we provide a high-level overview of the three main areas of research that

this dissertation builds upon. We discuss how human perception contributes to a person’s ability

to understand and interact with their environment (Section 2.1), the interfaces that have been

developed to enable users to explore VEs (Section 2.2), and the mathematical framework that

roboticists have created to allow them to develop rigorous robot navigation algorithms (Section 2.3).

2.1 Human Perception

The human perceptual system is responsible for organizing, identifying, and interpreting

the sensory information that is received by an observer’s sensory system [237]. Virtual reality

experiences are highly influenced by the user’s perceptual system. When in VR, the user perceives

stimuli that mostly come from the VR system. That is, VR system developers have direct control

over a large portion of the information perceived by users. Because of this, it is important for us

to understand how users react to different perceived stimuli so that we can create enjoyable and

effective virtual experiences for our users.

Some examples of different types of stimuli include visual, auditory, haptic, proprioceptive,

and vestibular signals, each of which is processed by a respective perceptual system of an observer.

During the process of perception, an observer’s brain must integrate the information from all
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of these different perceptual systems so that they can come to a conclusion about the state of

their surroundings. This is a process known as multisensory integration [186]. In VR, it is not

uncommon for the information about the user’s surroundings from different perceptual systems

to disagree. For example, a user playing a game in VR might see stimuli that correspond to a

jungle environment but might simultaneously be overhearing sounds of a cooking appliance in

the kitchen nearby, which provides auditory information that contradicts the visual indicator that

the user is in a jungle. This is a situation known as sensory conflict, and it can decrease a user’s

feeling of presence within a virtual experience.

2.1.1 Visual Perception

Although human perception is a multisensory experience, the rest of this dissertation focuses

primarily on visual perception and its intersection with locomotion since visual stimuli are usually

the primary channel through which a user experiences VR. Indeed, one of the primary techniques

that this work uses, called redirected walking (RDW), only works because humans tend to respond

more often to visual stimuli than non-visual stimuli (a phenomenon known as visual dominance

[152]). However, as we will briefly discuss in Section 7.5, a multisensory view of locomotion in

VR will likely be necessary in order to make notable progress in understanding human locomotion

in VR.

Visual perception refers to the brain’s interpretation of an environment through the eyes.

It is an important part of how observers understand their surroundings. Within VR, the visual

stimuli a user perceives come from the head-mounted display (HMD). The quality of the stimuli

will depend on HMD factors including refresh rate, display resolution, and field of view (FOV).
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FOV is the observable space an observer can see through their eyes or viewing device. FOV is

of particular interest to us in this thesis, since differences in FOV have been shown to influence

observers’ locomotion patterns. Visual perception is crucial to virtual experiences, so we will now

discuss some of the important facets of visual perception and how they interact with locomotion.

2.1.1.1 Optical Flow

Optical flow refers to the pattern of perceived motion of the surrounding environment that

is projected onto the human observer’s retina. Optical flow patterns serve as a visual signal of

self-motion for the human observer. Numerous studies have shown that optical flow influences

the observer’s locomotion control depending on the speed and direction of optical flow [13, 145,

221]. When the observer’s non-visual movement signals conflict with their visual movement

signals (namely optical flow), the brain prioritizes the visual signals. That is, when the observer

determines their current motion, they are more likely to believe visual information than non-

visual information if the two provide conflicting cues of self-motion [16, 114].

2.1.1.2 Vection

Vection is the illusory impression of self-movement provided by visual stimulation [78,

188]. It is typically felt when the observer visually perceives a moving environment, but their

body moves in a manner that would not produce the perceived optical flow patterns. Because

vection is most often induced by visual stimuli, it is closely tied to the perceived optical flow.

A common example of vection is the feeling of movement when an observer sits stationary in a

train and watches a neighboring train move.
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It is known that peripheral stimulation plays an important role in perceiving optical flow

patterns [145]. Thus, we can infer that peripheral stimulation, which VR provides a considerable

amount of, plays an important role in the degree of vection felt in the observer. In fact, many

studies have demonstrated that optical flow perceived in the periphery increases feelings of

vection [24, 89, 224]. However, it should be noted that there is evidence of feelings of vection

when foveal, and not peripheral, stimulation is present [220].

2.1.2 Simulator Sickness

Simulator sickness is the feeling of motion sickness experienced when using a VR system.

When they experience vection, it is common for users to also experience simulator sickness. It

is also possible for users to experience simulator sickness when using VR applications. Simulator

sickness decreases the usability of VR and can potentially deter people from wanting to experience

VR more than once. The exact cause of simulator sickness is not known, but the main theory

argues that conflict between visual, proprioceptive, and vestibular stimuli is the cause [108].

Hettinger et al. [78] strengthened this theory when they provided data suggesting that simulator

sickness is a product of vection.

It has been noted that FOV influences simulator sickness—specifically, a smaller FOV has

been shown to reduce the amount of simulator sickness users experience [53, 123]. A study by

Fernandes et al. [62] further explored how FOV influences simulator sickness. In their study, they

dynamically changed the FOV in VR using what they refer to as FOV restrictors. They concluded

that changing the FOV based on visually perceived motion makes users feel more comfortable

during their VR experiences [62].
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2.2 Virtual Reality Locomotion Interfaces

Navigation consists of two processes: wayfinding and locomotion. Wayfinding is the

process of determining the route through an environment that an agent (in our case, a human)

must travel on to go from their starting location to their goal destination [48]. Locomotion refers

to the low-level, mechanical process of how an agent travels along the route determined in the

wayfinding step in order to reach its destination (e.g. walking, flying, driving). Locomotion in

VR is essential for exploring VEs and delivering an interactive experience. A lack of support

for locomotion within the VE may reduce feelings of presence and, in turn, make VR less

effective [179].

Human gait features a wide range of movements like walking, running, skipping, and

waddling. A good locomotion interface must support these motions, while also accounting for a

variety of physical space shapes and user dimensions. Supporting such a variety of movements

is a challenge for VR systems. In this section, we will discuss the advantages and disadvantages

of different locomotion interfaces.

A locomotion interface is a device and/or software that allows a user to travel in a virtual

environment. Ideally, a locomotion interface should allow the user to naturally walk1 (or perfectly

mimic the sensations felt when one really walks), be easy to understand, and require minimal

extra hardware or setup. A number of different locomotion interfaces have been proposed,

prototyped, and evaluated. Some well-known interfaces include joystick controls, omnidirectional

treadmills [97], powered shoes [99], moveable tiles [98], and redirected walking [158]. Different

1“Naturally walk” refers to step-driven locomotion that does not use treadmills or other mechanical devices,
makes use of the entire gait cycle, and, ideally, is perceived by the user as identical to how they walk in the real
world while not in VR [116, 188].

18



locomotion interfaces may be undesirable in different situations because they do not meet all the

criteria of an ideal locomotion interface. Suboptimal locomotion interfaces are usually unsatisfactory

because they involve unwieldy hardware or lack vestibular or proprioceptive feedback that is

present during real walking, e.g. a treadmill.

Of the locomotion interfaces that have been studied, interfaces that utilize redirection

techniques (RTs) are especially appealing since they allow users to walk naturally while exploring

a VE. RTs allow users to explore VEs that are larger than the tracked workspace by manipulating

the user’s path in the virtual environment [140]. It has been shown that natural walking is the most

intuitive and beneficial locomotion technique in VR, as it improves users’ sense of presence [209],

memory, and performance [85, 149, 162]. As a result of the numerous benefits real walking

offers, researchers have invested considerable effort into developing and understanding locomotion

interfaces that support real walking.

2.2.1 Natural Walking in Virtual Reality

Standard VR systems do allow users to walk around during a virtual experience, but users

are only able to walk within the tracked space. Movement outside the workspace borders will

not be tracked by the system’s sensors, so the visual scene displayed on the HMD will not update

according to the user’s movements. Thus, the size of the VE that a user can explore is limited to

the size of the tracked space.

To support real walking and increase the size of the explorable VE, we can employ RTs. A

multitude of redirection techniques have been developed [27, 94, 158, 194], which has prompted

researchers to classify RTs based on their implementation-specific characteristics. Suma et al.
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distinguished between redirection techniques based on the conspicuousness (overt or subtle)

and continuity (discrete or continuous) of their implementations [195]. Subtle and continuous

techniques are preferred because they have been reported to create fewer breaks in presence.

However, depending on the user’s projected path and position in the workspace, we cannot always

rely on such techniques to keep users in the tracked workspace. In these situations, redirection

systems may sometimes be required to fall back on more overt techniques to ensure the user’s

safety [140, 195].

2.2.2 Redirected Walking

One popular subtle and continuous RT that enables natural walking in VR is redirected

walking (RDW) [158]. RDW involves imperceptibly manipulating the VE via rotations and

translations so that a user subconsciously adjusts their real-world position to remain on their

intended virtual path. Using this technique, we can steer users away from the tracked-space

edges while still giving users the benefits of real walking in the VE. This reduces the amount of

breaks in presence caused by reaching the bounds of the tracked space.

For example, a user will physically rotate by 180◦ when he or she wants to turn 180◦ in the

VE, if no redirection is applied. If redirection is applied such that some real-world rotation results

in a larger rotation in the VE, the user will turn until their position in the VE has rotated 180◦, but

the physical rotation will be less than 180◦. We can also redirect such that a physical rotation

results in a smaller virtual rotation. When implemented carefully, this discrepancy between

the physical and virtual movements is imperceptible to the user if it is small enough. Similar

transformations can be applied to a user’s walking path. When walking on a straight path, we
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can translate the VE in the direction opposite to the user’s walking direction, which results in a

virtual displacement that is larger than the user’s physical displacement. We can also rotate the

VE while the user walks to force the user to follow a curved path in the real world. Depending

on the strength and direction of the rotation, this will force the user’s real path to steer away from

the edges of the tracked space. See Figure 2.1 for a diagram that explains how RDW manipulates

the VE. This thesis is only concerned with rotations of the VE when the user is standing in place.

2.2.2.1 Limits of Redirection

By applying RDW, users are able to walk naturally and explore VEs larger than the tracked

workspace. However, we cannot simply amplify users’ movements by a large, constant factor

to maximize the size of the explorable VE without incurring negative repercussions such as

disorientation or increased simulator sickness. The scaling of a user’s movements must be

small enough to maintain the VR application’s usability and ensure the user’s comfort. Thus,

there exists a trade-off between redirection intensity and user experience [158]. Ideally, enough

redirection is applied to maximize the explorable size of the VE and minimize discomfort and

breaks in presence caused by manipulating the VE.

The intensity of scaling applied to the VE is controlled by parameters called gains. Rotation

gains increase or decrease a user’s rotation in the VE relative to their real-world rotation, while

translation gains increase or decrease a user’s displacement in the VE relative to their real-world

displacement. Curvature gains, on the other hand, cause users to walk along a curved physical

path while walking on a straight virtual path. Both rotation and translation gains are expressed

as a ratio of virtual motion to physical motion. A gain of 1 is applied when virtual motion to
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(a) A translation gain allows the user to walk distances in the VE that are greater than the distance walked
in the real world.

(b) A rotation rotation gain allows the user to turn a greater virtual distance compared to their physical
rotation.

(c) A curvature gain forces the user to walk on a curved physical path in order to walk in a straight path in
the VE.

Figure 2.1: Diagrams that illustrate how different RDW gains can be used to increase the size
of the explorable VE. The green borders represent the real-world tracked space borders, and the
purple borders represent the borders of the VE that correspond to the size of the tracked space.
Arrows indicate the user (green) or VE (purple) movement.
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physical motion is mapped 1:1. When a gain is greater than 1, the virtual movement (rotation

or translation) is increased, and the resulting real-world movement is smaller than the virtual

movement. Similarly, when a gain is less than 1, the virtual movement is decreased, and the

resulting real-world movement is larger than the virtual movement. A threshold refers to the point

at which the applied gain becomes noticeable to the user, and each threshold has an associated

gain. A threshold t corresponds to a gain g. A t threshold of g means that t% of the population

will believe that their virtual movements are larger than their physical movements when the gain

g is applied. For example, if the 50% threshold has a gain of 1.02, then half the population will

believe that their physical and virtual movements are the same when we apply a gain of 1.02 while

the other half will believe that their virtual movements are larger than their physical movements.

In previous work by Steinicke et al. the threshold values of interest are users’ 25% and 75%

thresholds, which correspond to decreased and increased virtual rotations respectively [187].

VE rotation is often discussed in relation to the user’s physical rotation. VE rotation with

the user’s physical rotation direction corresponds to a real-world rotation that is larger than the

virtual rotation, and VE rotation against the user’s physical rotation direction corresponds to a

real-world rotation that is smaller than the virtual rotation.

2.3 Motion Planning

In the field of robotics, motion planning is the problem of moving a robot from an initial

state to a goal state through a series of valid configurations that avoid collisions with obstacles

[115]. For a robot with n degrees of freedom, its configuration space (denoted C) is an n-

dimensional manifold, where each point in the manifold corresponds to a configuration of the
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robot. The configuration space describes the set of all states that a robot can be in. In order

to successfully navigate from a starting position to a goal position, the robot must find a set of

configurations that takes it from the starting position to the goal position. This can be formulated

as finding a continuous path of valid configurations through C. Some common desirable traits

of such a path are that it yields the shortest path and that the robot trajectory is smooth, without

many oscillations as it travels along this path. Motion planning has seen great success in allowing

researchers to create navigation algorithms that are rigorously defined, can provide guarantees on

navigation completion, and are robust to unknown, unpredictable, and dynamic environments.

There is considerable work on developing motion planning algorithms for static and dynamic

environments. Search-based planners discretize the state space (the set of all possible states) and

employ search algorithms to find a path from the start to the goal. An example of a search-

based motion planning algorithm is the A* algorithm [76]. Sampling-based planners operate

by randomly sampling the configuration space in order to build a valid path. Such algorithms

can usually quickly find valid solutions, but their solutions are usually not the most efficient

[60]. Potential field methods uses attractive and repulsive forces to guide the robot through

the environment [105]. These planners are easy to implement but are susceptible to getting

the robot trapped in local minima of the potential function. Planning algorithms may also use

geometric representations, such as visibility graphs and cell decomposition, to reason about

the environment, detect collisions, and compute collision-free paths [49]. Motion planning

algorithms may also use optimization to to handle dynamic obstacles and compute smooth trajectories

[144, 156]. Optimization-based approaches are advantageous in that they can more easily handle

complex, high-dimensional state spaces. Dynamic motion planning is the problem of computing

a collision-free path in an environment with moving obstacles. A popular approach to dynamic
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motion planning is the use of velocity obstacles to reason about collision-free paths in terms of

velocity [64, 211].

In this dissertation we show how VR locomotion can be reframed as a special kind of

motion planning (Chapter 4). We use motion planning as a kind of “language” which we can

use to precisely define constraints on VR locomotion and reason about the dynamics of VR

locomotion. As we will show, this allows us to develop new redirection algorithms and environment

complexity metrics that would be difficult to create using purely heuristic-based approaches like

much of prior work in the VR locomotion community has done.
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Part II

Locomotion Interfaces and Metrics for Natural Walking in Virtual Reality
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Chapter 3: Alignment-Based Redirection

Figure 3.1: A user being steered with our alignment-based redirection controller (ARC) in two
different environments. In Environment 1, the virtual environment (VE) is larger than the physical
environment (PE), and there is an obstacle in the northeast corner of the VE. The PE has no
obstacles. In Environment 2, the VE is larger than the PE, and both have obstacles in different
positions. (A) The user walks in a straight line forward in the VE. (B) In the PE, the user is steered
on a curved path away from the edge of the tracked space, in order to minimize the differences
in proximity to obstacles in PE and VE. (C) The user walks in a straight line forward in the VE,
with obstacles on either side of the path. (D) The user is steered on a path with multiple curves
in the physical space. The user avoids a collision with the obstacle in front of them, and is also
steered to minimize the differences in proximity to obstacles in the PE and VE. We are able to
steer the user along smooth, collision-free trajectories in the PE. Our extensive experiments in
real-wold and simulation-based experiments show that in simple and complex environments, our
approach results in fewer collisions with obstacles and lower steering rate than current state-of-
the-art algorithms for redirected walking.

In this chapter, we present a novel redirected walking controller based on alignment that

allows the user to explore large and complex virtual environments, while minimizing the number

of collisions with obstacles in the physical environment. Our alignment-based redirection controller,

ARC, steers the user such that their proximity to obstacles in the physical environment matches

the proximity to obstacles in the virtual environment as closely as possible. To quantify a
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controller’s performance in complex environments, we introduce a new metric, Complexity Ratio

(CR), to measure the relative environment complexity and characterize the difference in navigational

complexity between the physical and virtual environments. Through extensive simulation-based

experiments, we show that ARC significantly outperforms current state-of-the-art controllers

in its ability to steer the user on a collision-free path. We also show through quantitative and

qualitative measures of performance that our controller is robust in complex environments with

many obstacles. Our method is applicable to arbitrary environments and operates without any

user input or parameter tweaking, aside from the layout of the environments. We have implemented

our algorithm on the Oculus Quest head-mounted display and evaluated its performance in environments

with varying complexity.

3.1 Introduction

Exploring virtual environments (VEs) is an integral part of immersive virtual experiences.

Real walking is known to provide benefits to sense of presence [209] and task performance [162]

that other locomotion interfaces cannot provide. Using an intuitive locomotion interface like

real walking has benefits to all virtual experiences for which travel is crucial, such as virtual

house tours and training applications. Redirected walking (RDW) is a locomotion interface that

allows users to naturally explore VEs that are larger than or different from the physical tracked

space, while minimizing how often the user collides with obstacles in the physical environment

(PE) [157]. RDW works by slowly transforming the VE with rotations or translations such that

these transformations are imperceptible while still creating a subtle discrepancy between the

user’s physical and virtual trajectories. This discrepancy causes the user to adjust their physical
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trajectory to counteract the virtual camera motion induced by the virtual transformations, in order

to stay on their intended virtual trajectory. RDW is an appealing locomotion interface because it

allows users to explore the VE using real, natural walking.

Although RDW is a good locomotion interface for immersive virtual experiences, it has two

main limitations. First, the amount of redirection that can be applied to steer the user is dependent

on how easily the user can consciously perceive the virtual transformations induced by RDW. The

amount of redirection applied is controlled by gains, which determine the magnitude (intensity)

of rotations and translations applied to the VE. The gains that transform the VE the most, while

still remaining imperceptible to the user, are the perceptual threshold gains [187]. The intensity

of a gain corresponds to the amount of deviation between the user’s physical and virtual paths,

and thus the amount that the user is steered in the PE. Gains with high intensity result in more

redirection of the physical user at the cost of larger VE transformations, which can be more easily

detected and can cause simulator sickness [140].

The second limitation is that the effectiveness of RDW at minimizing the number of collisions

with physical obstacles depends on the relative complexity of the physical and virtual environments.

Navigation through an environment becomes more difficult when the environment is populated

with more obstacles because the user has fewer options for possible collision-free routes that

allow them to avoid collisions with obstacles when making any movements. Thus, the complexity

of an environment can be described in terms of the density of the obstacles in the environment.

For example, the empty VE used by Bachmann et al. [11] would be considered low complexity,

while the maze-like VE with multiple branching paths used by Nescher et al. [136] would

be considered high complexity. In virtual reality (VR), the user navigates through a virtual

and physical environment at the same time. A movement in one environment is paired with a
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movement in the other. Therefore, the navigation problem becomes harder, since all movements

must consider the obstacles in the VE as well as the PE. If the complexities (density and layout

of obstacles) of the PE and VE are similar, avoiding collisions is easier, since a movement that

yields a particular result (collision or no collision) in one environment is likely to result in the

same outcome in the other environment. However, if the complexities of the PE and VE are

very different, navigation is harder, because a movement in one environment will likely lead to a

movement in the other environment with a different outcome.

In the context of VR, a redirection controller determines the amount of redirection to

apply, given the user’s position in the physical and virtual environments [140]. At each frame,

the controller decides the level (intensity) of gains to apply in order to rotate or translate the

VE and alter the user’s physical trajectory. The controller uses heuristics or optimization in

conjunction with information about the PE and/or VE in order to determine the level of gains to

apply. Reactive controllers make decisions on how to steer the user based on the instantaneous

state of the system, while predictive controllers make decisions based on predictions about the

user’s future trajectory. Reactive controllers typically do not consider the VE when setting gains,

and the VE is often abstracted away by using an unbounded, empty environment. This design

decision allows reactive controllers to be simpler and remain relatively effective without requiring

much additional information, at the cost of worse performance than predictive controllers in some

environments. On the other hand, predictive algorithms often use information from the VE to

make predictions about the user’s virtual trajectory. From these predictions, these algorithms

are able to perform better than reactive algorithms by applying gains that are more suited to the

user’s environments and trajectory [136, 243]. Predictive algorithms rely on accurate predictions

however, so they usually do not perform well if it is difficult to forecast the user’s movement.
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At a high level, alignment can be defined as a state in which the user’s physical and virtual

configurations match. It was first formally studied by Thomas et al. [206, 207] with the goal

of allowing the user to interact with the PE when they are within some predefined region of

the VE, to enable haptics. Prior to the work of Thomas et al., Zmuda et al. [243] developed

a controller that used a core idea of alignment; their controller was allowed to place the user

near a physical obstacle if its position relative to the physical user matched the position of a

virtual obstacle relative to the virtual user. Alignment provides a simple way to consider both

the physical and virtual environment when steering the user, which is important for developing

effective controllers.

Main Contributions: We present a novel alignment-based redirection controller (ARC) for

locomotion in VR. ARC is a redirection controller that applies RDW gains to steer the user such

that the user’s proximity to obstacles in the PE matches their proximity to obstacles in the VE as

closely as possible. Our controller is able to steer users through physical and virtual environments

that have different relative complexities and makes no assumptions about the distribution of the

obstacles in each environment. In these complex environments, ARC achieves a lower number of

collisions with physical obstacles when compared to current state-of-the-art controllers. Furthermore,

ARC achieves this lower number of collisions while also redirecting the user using less intense

gain than other controllers, which reduces the likelihood that users experience simulator sickness

during locomotion [140]. We conduct extensive experiments in varied environments, using many

different performance metrics, and find that ARC consistently outperforms existing state-of-the-

art algorithms. The main contributions included are:

• A novel alignment-based redirection controller that can function in arbitrary environments,
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without requiring any information from the application except for a map of the PE and VE

and the obstacles in each environment. Benefits of our algorithm include:

– Significantly fewer collisions in PE/VE pairs with similar complexities and in PE/VE

pairs with very different complexities.

– A lower steering rate, which helps avoid simulator sickness and increases the usability

of the system for users with high sensitivity to redirection.

• A novel metric, Complexity Ratio (CR), for measuring and comparing the complexity

of PE/VE pairs in the context of VR navigation. Using CR, we can directly assess a

controller’s performance in different environments, which allows us to compare redirection

controllers easily.

• Extensive simulation-based evaluation of ARC compared to current state-of-the-art controllers.

From our experiments, we conclude that alignment is an effective tool for minimizing

collisions with physical obstacles when steering a user with RDW in simple and complex

environments. We also show our controller working in a proof of concept implementation

on the Oculus Quest.

3.2 Background

Redirected walking works by imperceptibly transforming the VE around a user such that

they adjust their physical trajectory to compensate for the VE transformations and remain on

their intended virtual trajectory [157]. The magnitude (or intensity) of the VE transformations

is determined by gains. Razzaque et al. [157] defined three gains, rotation, translation, and
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curvature, for rotating or translating the VE depending on the user’s movement. Rotation gains

rotate the VE around the user as they turn in place, which results in virtual rotations that are

larger or smaller than the corresponding physical rotations, depending on the direction of the VE

rotation relative to the physical rotation. Translation gains translate the VE forward or backward

as the user walks in a straight line, which results in their virtual displacement being different from

their physical displacement, depending on the direction of the VE translation. Curvature gains

steer the user on a curved physical path by slowly rotating the VE around the user as they walk on

a straight virtual path. The direction in which the user is steered is determined by the direction that

the VE is rotated. Most research in redirected walking aims to either understand the perceptual

limits of redirection or develop RDW controllers that minimize the number of collisions a user

experiences during locomotion. An overview of different RDW methods is given in [140].

3.2.1 Perceptual Thresholds

The amount of redirection that can be applied before users notice the redirection is determined

by perceptual thresholds. Perceptual thresholds are important to consider since strong redirection

can induce simulator sickness [140] and break the user’s feeling of presence in a virtual experience

[195]. There has been considerable research into measuring the perceptual thresholds of each

RDW gain, but there is no general consensus when it comes to selecting these thresholds [140].

The first comprehensive study of RDW thresholds was performed by Steinicke et al. [187].

Many researchers have since expanded on threshold estimation by reproducing results and measuring

thresholds under different conditions. A study by Grechkin et al. [71] determined that translation

and curvature gains can be applied simultaneously without altering either gain’s perceptual thresholds.
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Neth et al. [137] showed that a user’s curvature gain detection thresholds are dependent on his

or her walking speed. Williams et al. [230] reproduced the results found by Steinicke et al.

[187] and demonstrated that users’ perceptual thresholds could vary depending on their gender,

the field of view, and the presence of distractors in the VE. Hutton et al. [92] suggest that

perceptual thresholds can differ greatly between different people, which may explain the different

threshold values reported in prior literature. Thus, a system using some commonly-accepted

threshold values (such as those measured in [187]) may apply appropriate gains for most users.

However, gains could still be too high for some users, which could induce sickness and make

the user uncomfortable. All this suggests that there are still many open problems with respect to

accurately measuring a person’s perceptual thresholds. A recent review of studies that measured

perceptual thresholds can be found in [111].

3.2.2 Redirected Walking Controllers

A redirection controller is an algorithm that decides which gains to apply at each frame in

order to minimize the number of collisions the user incurs in the PE [140]. While a controller’s

goal is to minimize the number of collisions, it is important to note that a controller cannot

guarantee a collision-free trajectory in all circumstances. A controller’s effectiveness depends on

the configuration of the physical and virtual environments (environment dimensions and size and

location of obstacles), the virtual path traveled, and the user’s perceptual thresholds.

Controllers fall into three categories: scripted, reactive, and predictive [140]. Scripted

controllers steer the user as they follow a virtual path pre-determined by the system developers.

Scripted controllers are effective at reducing the number of collisions but impose tight restrictions
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on the VE. These controllers can perform very poorly if the user deviates from the pre-determined

virtual path. Work studying scripted controllers includes the development of steering algorithms

based on change blindness [194] and overlapping virtual spaces [196].

Reactive controllers steer the user based on information available from the user’s previous

movements and current state. These controllers are designed to work in a wide variety of PEs

and VEs since they do not make assumptions about the user’s future path. Reactive controllers

fall short at achieving maximal collision avoidance since they do not use all the information

available to the system. Razzaque [157] proposed three reactive algorithms for RDW: steer-

to-center (S2C), steer-to-orbit, and steer-to-multiple-targets. Steer-to-center constantly redirects

the user towards the center of the physical environment. Steer-to-orbit steers the user along

a circular path that orbits the center of the PE. Steer-to-multiple-targets steers the user to one

of multiple pre-determined physical goal positions, depending on the user’s position in the PE.

Despite being one of the first controllers ever, S2C has regularly outperformed other algorithms

in a variety of environments [7, 83]. Additionally, steer-to-orbit performs well when the user

walks on long, straight virtual paths [83]. However, more recent algorithms have performed

as well as, or better than, S2C. Strauss et al. introduced a controller trained by reinforcement

learning that outperformed S2C in simulated trials and performed as well as S2C in user trials

[192]. Chang et al. [29] and Lee et al. [117] have also recently used reinforcement learning to

train RDW controllers. Thomas et al. [205] and Bachmann et al. [11] simultaneously introduced

controllers based on artificial potential fields that outperformed S2C in non-convex and multi-user

environments.

Predictive controllers make predictions about the user’s intended virtual path and steer

them accordingly. Predictive controllers can be effective since they tend to use most of the
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information available to the system. However, their performance relies partially on the accuracy

of their predictions. Nescher et al. [136] and Zmuda et al. [243] developed predictive controllers

that were outperformed S2C, while Dong et al. improved upon the potential field-based controllers

by incorporating trajectory prediction into the controller [54].

In addition to determining the gains to apply at each frame, redirection controllers have a

resetter component. When the user gets too close to a physical obstacle, the system initiates a

reset maneuver in order to reorient the user away from the nearby obstacle. This reset maneuver

is counted as a collision. The specific reset policy employed depends on the controller, but one

popular resetting technique is the 2:1 reset [229], wherein the magnitude of a user’s physical

rotations is doubled, so a 180◦ physical turn yields a 360◦ virtual turn. Another effective reset

technique is distractors, which are elements in the VE that capture the user’s attention to reorient

them [147, 148, 149]. Other reset techniques may be specific to the RDW controller, such as the

reset-to-gradient technique seen in potential field controllers [11, 205].

Evaluation metrics for RDW controllers can depend on the experimental setup. The majority

of all studies use the number of collisions as one performance metric. Other common metrics

include the average virtual distance walked between collisions, the mean steering rate, and user

performance at a virtual task. Since the success of an RDW controller depends on the environments

and the path traveled, it can be difficult to compare algorithms using only performance metrics.

Thus, it is common for researchers to test not only their new controller but also the state-of-the-art

controllers in the same environments.
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3.2.3 Environment Complexity Metrics

Measuring the effect of environment complexity on task performance is useful for understanding

the interactions between an agent and its environment. This measurement enables us to understand

and predict how an agent will perform at a task in an environment, which allows us to change the

environment design or improve our algorithms accordingly.

VR researchers have studied how a user’s ability to complete a task in an environment

depends on the environment’s complexity [21, 22, 154]. While those studies are useful for

understanding the interactions between environment complexity and task performance, they did

not quantify the environment complexity with precise metrics. This makes it difficult to generalize

their results and makes it harder to predict how users will perform in unstudied environments.

Researchers in robot navigation have developed metrics to quantify environment complexity

[4, 45, 169]. These metrics allow researchers to group and classify environments by complexity

and directly compare the performance of different algorithms in different groups of environments.

3.3 Redirection by Alignment

The concept of alignment in the context of redirected walking was first formally studied by

Thomas et al. [206, 207]. However, Zmuda et al. [243] used key elements of alignment prior to

the work of Thomas et al. Additionally, Simeone et al. [174] recently introduced a locomotion

technique that is similar to alignment in that it aims to match the VE and the PE, but it does so by

overtly manipulating the VE in real time. In this section, we define our notion of alignment and

provide the details of our general alignment-based redirection controller.
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3.3.1 Definitions and Background

3.3.1.1 Alignment

A redirection controller takes as input the current position and orientation of the user in

the PE and the VE. We define the configuration of the VR system as the user’s position and

orientation in the PE and VE. Alignment is a configuration in which the user’s physical state

matches their virtual state. When this configuration is achieved, we say that the system (or user)

is aligned. In this work, we are concerned with steering users on collision-free paths in the PE

and VE at the same time. How close a user is to incurring a collision can be described by the

distance to obstacles around them, i.e. their proximity to obstacles. Thus, we describe the user’s

state in an environment by their proximity to obstacles in the environment.

We assume that the user travels on a collision-free path in the VE. We associate a proximity

function along each point on this path. This proximity function tells us how close the point is to

obstacles in the environment. We want to define a proximity function that can be formulated for

paths in the PE and VE, to be used by our redirection controller to compute collision-free paths

to steer the user on.

Let d(p, θ) be the distance to the closest obstacle in the direction θ originating from a

location p = (x, y) in an environment. This distance can be computed using simple ray-intersection

queries. Let S = {θ1, θ2, ..., θk} be a set of k discrete directions in the range [0, 2π). We define

the proximity function, Prox(p), at a point p to be the sum of distances to obstacles in each

direction θi ∈ S:

Prox(p) =
k∑

i=1

d(p, θi). (3.3.1.1)
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To compare proximity values Prox(pphys) and Prox(pvirt) for a point pphys in the PE and a point

pvirt in the VE, we cannot simply compute Prox(pphys) − Prox(pvirt). If we did, it would be

possible to get a value of 0, implying perfect alignment, for positions in which the physical and

virtual user are not actually perfectly aligned. For example, this can happen when d(pphys, θ) −

d(pvirt, θ) = −1 · (d(pphys, θ + π)− d(pvirt, θ + π)) for all θ ∈ [0, 2π).

To resolve this problem and have a meaningful notion of what it means to compare values

of Prox(p), we can instead sum the absolute value of the differences in distance over all θi:

dist(Prox(pphys), P rox(pvirt)) =
k∑

i=1

|d(pphys, θi)− d(pvirt, θi)|. (3.3.1.2)

Note that we use the same set of directions S for the PE and the VE. Computing this difference

is too computationally expensive for large values of k, so in our implementation we approximate

this value by computing the difference in distances in three directions around the point (k = 3).

Now we can define the physical and virtual states at time t which we use in our rediretion

controller:

qphyst = {d(pphys, θphys), d(pphys, θphys + 90◦), d(pphys, θphys − 90◦)},

qvirtt = {d(pvirt, θvirt), d(pvirt, θvirt + 90◦), d(pvirt, θvirt − 90◦)}.
(3.3.1.3)

Here, pphys and pvirt are the user’s positions in the physical and virtual environments, respectively.

Similarly, θphys and θvirt are the user’s headings in the physical and virtual environments, respectively.

Given the user’s physical and virtual states, we define the state of the system at time t as the union
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Figure 3.2: Visualization of the three values from the PE and three values from the VE that
constitute a user’s state.

of their physical and virtual states at time t:

Qt = {qphyst , qvirtt }. (3.3.1.4)

This definition of state is illustrated in Figure 3.2.

Given Qt, we can measure the alignment of the state, A(Qt) by computing the discretized

version of Equation 3.3.1.2:

A(Qt) = dist(qphyst , qvirtt ), (3.3.1.5)

where dist(qphyst , qvirtt ) is defined as the sum of the absolute values of the differences between

the distances to obstacles in the PE and VE:

dist(qphyst , qvirtt ) = |d(pphys, θphys)− d(pvirt, θvirt)|

+ |d(pphys, θphys + 90◦)− d(pvirt, θvirt + 90◦)|

+ |d(pphys, θphys − 90◦)− d(pvirt, θvirt − 90◦)|.

(3.3.1.6)

The more similar a user’s physical and virtual states are, the closer A(Qt) will be to 0.

Conversely, a physical and virtual state that are very different will yield a larger value for A(Qt).

We reiterate that one can defineA(Qt) and dist(qphyst , qvirtt ) differently from how we have defined
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them. A different definition corresponds to a different notion of what it means for a system to be

aligned. Our controller is concerned with avoiding collisions in the PE, so proximity to obstacles

was an appropriate way to define A(Qt) and dist(qphyst , qvirtt ).

With traditional RDW controllers, the goal of the system is to steer the user away from

obstacles in the PE. With an alignment-based controller, the goal is to steer the user to a physical

state that most closely matches the virtual state. In general, the VE will differ greatly from

the PE, so it is common that a particular virtual state does not have a corresponding physical

state with which it aligns perfectly. Thus, at any given instance, an alignment-based redirection

controller aims to minimize the difference between the physical and virtual states and does not

necessarily aim to perfectly align the two. If the global minimum yields perfect alignment, then

an alignment-based controller should eventually reach this configuration. If it were possible to

keep a user aligned at all times, the user would never encounter collisions while exploring a VE,

and an alignment-based RDW controller could provide an optimal solution to the problem of

RDW.

3.3.1.2 Environment Complexity

The complexity of an environment is dependent on the task to be completed in the environment

[45]. For the purposes of locomotion, we define complexity as the ease with which a user

can reach a goal destination without colliding with any obstacles in the environment. As the

environment becomes populated with more obstacles, this becomes more difficult, and so the

complexity of the environment increases.

LetC(p) be the shortest distance between a point p and the closest obstacle in an environment
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E. We define the complexity of E as the average value of C(p) over all points in E:

C(E) =
1

|P |
∑
p∈P

C(p), (3.3.1.7)

where P is the set of all points p in E. When there is a lot of open space in the environment (low

obstacle density), C(E) will be large; C(E) approaches 0 as the amount of open space in the

environment decreases (high obstacle density).

Since VR locomotion depends on a physical and virtual environment, we must relate the

environments’ complexity measures together. To do this, we compute the complexity ratio (CR)

of the virtual environment Evirt and physical environment Ephys:

CR =
Ephys

Evirt

. (3.3.1.8)

This definition of environment complexity gives us an intuitive way to describe how easy

it is to locomote through an environment, and CR tells us how similar the complexities of two

environments are. In VR, it is common for the PE to have a lower obstacle density than the

VE, i.e. C(Ephys) > C(Evirt). A higher value for CR corresponds to a greater disparity in the

complexity of the PE and VE, which implies that collision-free VR navigation is more difficult.

This definition for CR is formulated on a continuous domain, which makes it difficult to compute

exactly. To simplify the computation, we discretize the equation by sampling a point every 0.5

meters in the environment.
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3.3.2 Alignment-based Redirection Controller

3.3.2.1 Redirection Heuristic

In this section, we provide details on how our alignment-based redirection controller (ARC)

uses alignment to determine the RDW gains to apply at each frame. Note that ARC assumes that

the user travels on a collision-free virtual trajectory in the direction of their heading (they do not

walk backwards or side-to-side). Since the user’s positions and orientations in the environments

are known at all times through the tracking information, ARC can compute the A(Qt) on every

frame according to the equations defined in subsubsection 3.3.1.1. IfA(Qt) = 0, no redirection is

applied. If A(Qt) ̸= 0, ARC uses the following heuristics to set the redirection gains, depending

on the user’s current movement.

If the user is translating, the translation gain gt is set to be:

gt = clamp
(
d(pphys, θphys)

d(pvirt, θvirt)
, minTransGain, maxTransGain

)
, (3.3.2.1)

where minTransGain = 0.86 and maxTransGain = 1.26. The clamp(x,minV al,maxV al)

function returns x if minV al ≤ x ≤ maxV al, and returns minV al if x < minV al or maxV al

if x > maxV al. This heuristic for the translation gain speeds up the user’s physical walking

speed relative to their virtual walking speed if there is more open space in front of the physical

user than there is in front of the virtual user. If there is more space in front of the virtual user

than there is in front of the physical user, the user’s physical walking speed decreased relative to

their virtual walking speed. We set gt equal to the ratio of the distances, bounded by previous

measured perceptual thresholds, so that the translation gain changes gradually, which increases
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user comfort.

If the user is undergoing a translation motion, we need to set the curvature gain gc. First,

we determine which of the spaces to the left and right of the physical user is more dissimilar to

its virtual counterpart:

misalignLeft = d(pphys, θphys + 90◦)− d(pvirt, θvirt + 90◦),

misalignRight = d(pphys, θphys − 90◦)− d(pvirt, θvirt − 90◦).

(3.3.2.2)

If misalignLeft > misalignRight, we want to steer the user to the left in order to minimize

the misalignment. To do this, we set gc as follows:

scalingFactor = min(1,misalignLeft),

gc = min(1, scalingFactor ×maxCurvatureRadius),

(3.3.2.3)

where maxCurvatureRadius = 7.5m. If we instead want to steer the user to the right in order

to minimize the misalignment (i.e. when misalignRight > misalignLeft), we set gc in a

manner similar to Equation 3.3.2.3, but we exchange misalignLeft for misalignRight in the

scalingFactor computation. The sign of the curvature gain must also be set appropriately to

steer the user in the desired direction. With this heuristic, we set the curvature gain proportional

to the misalignment on the left or right of the user, depending on which is larger. The gain is

bounded by the maximum curvature gain of radius 7.5m to reduce the chance that the user feels

simulator sickness during redirection.

If the user is rotating, we set the gain according to the user’s distance to objects in front

of and on both sides of the user. Our heuristic for gt only considers the distance to objects in
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front of the user since translation gains only alter the forward and backwards displacement of the

user. The heuristic for gc only considers the distances to objects on either side of the user since

curvature gains only steer the user to the left or right when walking on a straight virtual path.

However, our heuristic for the rotation gain considers all three distances in order to accurately

describe the user’s orientation. Orientation is a function of all 360◦ around the observer, so

the most accurate measurement of orientational alignment would compare distances in all 360◦

directions. That degree of detail is not necessary, since d(p, θ) and d(p, θ + ∆θ) will produce

very similar values for most positions p in an environment for small ∆θ. Furthermore, sampling

distances in all directions around the observer is too computationally expensive to run in real-

time, which is a requirement for reactive RDW controllers.

To set the rotation gain gr, we check if the direction that the user is turning increases or

decreases their rotational alignment. To compute this, we first compute the user’s rotational

alignment for the current and previous frames:

curRotaAlignment = dist(qphysicalt , qvirtualt ),

prevRotaAlignment = dist(qphysicalt−1 , qvirtualt−1 ).

(3.3.2.4)

Then, we set gr based on whether the current rotational alignment is better or worse than the

previous rotational alignment:

gr =



minRotaGain prevRotaAlignment < curRotaAlignment,

maxRotaGain prevRotaAlignment > curRotaAlignment,

1 otherwise.

(3.3.2.5)
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Here, minRotaGain = 0.67 and maxRotaGain = 1.24. The rotation gain is smoothed by

linearly interpolating gr between frames with a weighting of 0.125 on the previous frame’s gain.

The idea behind this heuristic is that we want to speed up the user’s rotation when they are turning

in a direction that improves their rotational alignment, and slow down their rotation when they

are turning in a direction that worsens their rotational alignment.

3.3.2.2 Resetting Heuristic

Since we cannot guarantee that the user will travel on a collision-free physical path, our

alignment-based controller needs a resetting policy to reorient the user when they are about to

collide with a physical obstacle. To ensure that the user does not actually walk into any obstacles,

a reset is triggered when the user comes within 0.7m of an obstacle. Our reset policy reorients

the user such that they face the direction in the PE for which the distance to the closest physical

obstacle in the user’s physical heading direction most closely matches the distance to the closest

virtual obstacle in the user’s virtual heading direction.

When a reset is triggered, let pphys and pvirt be the user’s physical and virtual positions,

respectively, and let θphys and θvirt be their physical and virtual headings, respectively. First, we

sample 20 equally-spaced directions {θ1, θ2, ..., θ20} on the unit circle centered at pphys. For each

θi, we compute the distance to the closest physical obstacle in that direction as d(pphys, θi) to

produce 20 distances {d1, d2, ..., d20}. The direction the user will face after the reset is complete,

denoted θreset, is the θi for which the corresponding distance di most closely matches the distance

d(pvirt, θvirt). This value θreset is subject to two constraints. First, θreset must face away from the
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obstacle the user is about to walk into:

dot(θreset, obstacleNormal) > 0, (3.3.2.6)

where obstacleNormal is the normal of the closest face of the obstacle that triggered the reset.

The second constraint is that d(pphys, θreset) ≥ d(pvirt, θvirt). If this second constraint cannot

be satisfied by any of the θi that also satisfy the first constraint, θreset is set to the direction

that minimizes the difference between d(pphys, θreset) and d(pvirt, θvirt) and satisfies the first

constraint. Please refer to Figure 3.3 for a visual explanation of our resetting policy.

Once θreset is computed, we turn the user to face that direction. The user is instructed to

turn in place until their heading is the same as θreset, while the virtual turn is scaled up to be a

360◦ turn. In order to minimize the amount of rotational distortion required for the reset, the user

turns in the direction of the larger of the two angles between θphys and θreset. This method for

resetting is inspired by the reset method used by Bachmann et al. [11].

3.4 Experiments

We conducted three experiments in simulation, each with a different pair of physical and

virtual environments (see Subsection 3.4.3). For each experiment, we compared our controller

with two reactive controllers: an artificial potential function-based algorithm (APF) and steer-

to-center (S2C). The APF controller is implemented as described by Thomas et al. [205]. We

compared our method with APF because it is currently the state-of-the-art reactive RDW controller,

having been shown to perform well in empty environments, environments with obstacles, and

environments with multiple users [11, 54, 132, 205]. We chose to also compare our method

47



Figure 3.3: A visualization of the two steps involved in resetting. The top row shows the process
of selecting the best direction for resetting. In this example, θreset is chosen to be θ3. To reduce
visual clutter, we only show eight of the twenty sampled directions. The bottom row shows the
user to turning to face the best direction.
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with S2C because it is a commonly-used benchmark in the RDW controller literature. Our

implementation of S2C is the same as the one developed by Hodgson et al. [84] since it has

many improvements over the original S2C algorithm proposed by Razzaque [157]. We note that

S2C is expected to perform very poorly in some of our environments (Subsection 3.4.3) due to

obstacles near the center of the PE, and that it is fairer to compare ARC against APF in these

environments, but we still evaluated S2C in these conditions for the sake of completeness. The

reset policy used by APF and S2C was the modified reset-to-center policy described in [205].

We also informally tested a proof of concept VR implementation to evaluate ARC in real PE/VE

pairs, for which we implemented ARC in the Unity 2019.4.8f1 game engine, and ran tests using

an Oculus Quest head-mounted device. The participant in the proof of concept was one of the

authors.

There are existing controllers that either have similar features to our alignment-based controller

or were tested in similar environments. Zmuda et al.’s FORCE controller [243] makes use of

the core assumption of alignment, that users will not walk into obstacles in the VE, to get

performance gains. Nescher et al.’s MPCRed controller [136] uses information about the VE

to inform the decisions about gain selection. Although those controllers are similar to our

controller in some aspects, we did not compare our work against them in this work because they

are predictive controllers, while our algorithm is purely reactive. Since predictive and reactive

controllers have fundamental differences by definition [140], it would not be a fair comparison.

It should be noted that while it is unfair to compare ARC to predictive controllers, it may not

be completely fair to compare with reactive controllers, either. ARC is not predictive in the sense

that it does not explicitly predict the user’s future trajectory. However, by computing the user’s

proximity, ARC does implicitly “predict” where a user will travel, since the algorithm assumes
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that users will avoid virtual obstacles. ARC is reactive in the sense that all information used to

set redirection gains is computed on a frame-by-frame basis, and no future or past information is

used in the steering process. Thus, one can consider ARC to fall somewhere between predictive

and reactive controllers, which suggests that the traditional taxonomy of redirection controllers

[140] may need to be updated to include newer algorithms.

3.4.1 Performance Metrics

For each experiment, we compared the performance of the controllers using three quantitative

performance metrics. The metrics we used are:

• Number of resets: The number of times the user collided with a physical obstacle. This is

a standard metric in RDW literature.

• Average distance walked between resets: The average of the physical distance walked

on a path before incurring a collision.

• Average alignment: The average alignment A(Qt) for a path.

We also include qualitative evaluations showing the amount of space in the physical environment

that was used, showing the effects of CR on controller performance, and showing the distribution

of curvature gains applied by each controller.

The number of resets and the average distance walked between resets both provide a

measurement of how many collisions the user incurs during locomotion. The more collisions

a user experiences, the shorter the distance between resets will be. We also use heat maps of the

user’s location in the physical environment as a qualitative metric for the number of collisions.
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When a user collides with an obstacle, they start a reset maneuver (subsubsection 3.3.2.2) which

involves turning in place where they stand. This is manifested as a large amount of time spent in

one spot, which will be highlighted on the heat map. To measure and compare the intensity of

gains applied by each controller, we computed the average curvature gain for each path walked,

and present histograms of the frequency of each average curvature gain across all paths. This

metric is the same as the average steering rate metric that commonly appears in RDW literature

[11, 117, 192]. The average alignment metric is used to show that our algorithm does indeed

optimize for a low alignment score, and that other algorithms do not.

3.4.2 Simulated Framework

Properly evaluating an RDW controller requires testing the controller on a large number

of paths, ideally in varied environments. It is common to use simulations to evaluate RDW

controllers to avoid the high cost of running user studies [11, 29, 54, 117, 132, 192, 205, 206,

207]. Our simulated experiments were conducted on a computer with an AMD Ryzen 7 3700X

8-Core processor (3.60 GHz), 16 GB of RAM, a GeForce RTX 2080 SUPER GPU, and 64-bit

Windows 10 OS.

In an effort to make it easier to compare out work to prior research, our simulated user

representation is similar to the one used by Thomas et al. [205]. The user was represented as

a circle with radius 0.5m. If the boundary of this circle came within 0.2m of an obstacle, this

was counted as a collision and a reset was initiated. The user’s walking velocity was 1m/s, and

their angular velocity was 90◦/s. The path model used to generate user trajectories is the same

as the one developed by Azmandian et al. [7]. In this model, a waypoint is generated at a random
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distance ranging from 2m to 6m away from the previous waypoint. The waypoint was placed

at a random angle between π and −π relative to the previous waypoint. To follow a series of

waypoints, the user turned to face the next waypoint, and then walked in a straight line towards

it. Our simulation ran with a timestep of 0.05. To compute distances to obstacles, we represent

the PE, VE, and obstacles as polygons (sets of vertices).

3.4.3 Environment Layouts

Each of our three simulation experiments had a unique pair of physical and virtual environment

configurations. Diagrams for each environment are shown in Figure 3.4.

Environment A includes an empty 10m×10m physical environment and an empty 10m×

10m virtual environment. This simple environment is used as a sanity check and to show that our

algorithm can guide users on collision-free paths if perfect alignment is achievable. The CR of

Environment A is 1. Exact vertex coordinates for Environment A are listed in Table 3.1.

Environment A (physical)
Boundary (−5,−5), (5,−5), (5, 5), (−5, 5)

Environment A (virtual)
Boundary (−5,−5), (5,−5), (5, 5), (−5, 5)

Table 3.1: Coordinates of vertices of boundaries and obstacles in each environment.

Environment B is a moderately complex environment. The physical environment is a

12m×12m physical room with 2m-wide corridors. These corridors are created by four 3m×3m

square obstacles placed in the four quadrants of the room. The virtual space for Environment

B is a 17m × 12m room with 2m-wide corridors, created by six 3m × 3m square obstacles.

Environment B was used to show that ARC can handle environment pairs that have locally similar
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features (regular corridors of the same width) but globally different dimensions. The CR of

Environment B is 1.170. Exact vertex coordinates for Environment B are listed in Table 3.2.

Environment B (physical)
Boundary (−6,−6), (6,−6), (6, 6), (−6, 6)
Obstacle 1 (−4,−4), (−1,−4), (−1,−1), (−4,−1)
Obstacle 2 (1,−4), (4,−4), (4,−1), (1,−1)
Obstacle 3 (1, 1), (4, 1), (4, 4), (1, 4)
Obstacle 4 (−4, 1), (−1, 1), (−1, 4), (−4, 4)

Environment B (virtual)
Boundary (−11,−6), (6,−6), (6, 6), (−11, 6)
Obstacle 1 (−4,−4), (−1,−4), (−1,−1), (−4,−1)
Obstacle 2 (1,−4), (4,−4), (4,−1), (1,−1)
Obstacle 3 (1, 1), (4, 1), (4, 4), (1, 4)
Obstacle 4 (−4, 1), (−1, 1), (−1, 4), (−4, 4)
Obstacle 5 (−9, 1), (−6, 1), (−6, 4), (−9, 4)
Obstacle 6 (−9,−4), (−6,−4), (−6,−1), (−9,−1)

Table 3.2: Coordinates of vertices of boundaries and obstacles in each environment.

Environment C is a highly complex environment. The physical environment is a 10m ×

10m physical room with three rectangular obstacles. In the center of the space is a 2m × 4m

obstacle. The bottom-left corner of the room features a 2m × 2m square obstacle. Along the

top boundary of the room is a 1m× 4m obstacle. This PE was designed to represent a plausible

layout for a room in a house (such as a living room). The virtual space used in Environment C is

a 20m×20m room with regular and irregular polygonal obstacles scattered throughout the room.

Environment C was used to show that our algorithm is able to steer users through environments

that are different in both local and global features. The CR of Environment C is 1.625. Exact

vertex coordinates for Environment C are listed in Table 3.3.

We also used two different PE/VE pairs in our proof of concept implementation. The first

environment pair included a roughly 3.8m× 6.9m PE and a roughly 5.65m× 8.7m VE. The PE
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was empty, and the VE had a roughly 1.7m× 2.3m obstacle in the northeast corner of the room.

The second PE/VE pair featured a roughly 4.87m × 7.62m PE and the same virtual room from

the first environment pair. The PE had a 1.1m × 1.5m obstacle along the west wall, and the VE

had a 1.7m× 2.3m obstacle on the east wall, and a 1.7m× 1.8m obstacle along the west wall.

Environment C (physical)
Boundary (−5,−5), (5,−5), (5, 5), (−5, 5)
Obstacle 1 (−4.5,−4.5), (−2.5,−4.5),

(−2.5,−2.5), (−4.5,−2.5)
Obstacle 2 (−2,−1), (2,−1), (2, 1), (−2, 1)
Obstacle 3 (−2, 4), (2, 4), (2, 5), (−2, 5)

Environment C (virtual)
Boundary (10,−10), (10, 10), (−10, 10), (−10,−10)
Obstacle 1 (−4.5,−4.5), (−2.5,−4.5), (−3.5,−2.5)
Obstacle 2 (0, 2), (2, 1), (1,−2), (−1,−2), (−2, 1)
Obstacle 3 (−2, 4), (2, 4), (2, 5), (−2, 5)
Obstacle 4 (−8.5, 8.5), (−8.5, 2.5), (−6.5, 2.5),

(−7, 7), (−2.5, 6.5), (−2.5, 8.5)
Obstacle 5 (−8,−1), (−8,−2), (−7,−2), (−7,−1)
Obstacle 6 (−7,−3), (−7,−4), (−6,−4), (−6,−3)
Obstacle 7 (−9,−5), (−9,−7), (−8,−7), (−8,−5)
Obstacle 8 (−6,−9), (−3,−7), (−3,−6), (−7,−8)
Obstacle 9 (3,−4), (3,−8), (7,−8), (7,−4)

Obstacle 10 (5, 9), (4, 8), (8, 4), (8, 8)

Table 3.3: Coordinates of vertices of boundaries and obstacles in each environment.

3.4.4 Experiment Design

For each experiment, we generated 100 random, collision-free virtual paths with 100 waypoints.

The user travelled along each path three times, using either S2C, APF, or ARC for redirection.

Note that the same 100 paths were used for each redirection controller within a particular environment.

Although the virtual paths were random, they all had the same starting location and direction

within an environment. In Experiment 1, the virtual user started in the center of Environment
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Figure 3.4: Diagrams of the physical and virtual environment pairs tested in our experiments.

A, facing north. In Experiment 2, the virtual user started in the center of Environment B, facing

north. In Experiment 3, the virtual user started 3.5m below the center of Environment C (south of

the pentagon), facing north. For every path, the physical user had a random starting location, but

their heading direction matched that of the virtual user’s at the start of the path. The physical

starting location for a given path was the same regardless of the controller being evaluated.

Having the user start in a random physical location increases the dissimilarity between the user’s

physical and virtual states, which makes it harder for a redirection controller to avoid collisions.

We used these random starting positions to show that ARC is still able to achieve a low number

of collisions, even in this difficult setting.
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3.5 Results

We performed evaluations of the performance of S2C, APF, and ARC using three quantitative

metrics and three qualitative metrics (Subsection 3.4.1). Each metric was computed for all 100

paths in each condition. RDW controller algorithms can sometimes encounter “unlucky” virtual

paths that make it particularly difficult to avoid collisions, and the user will end up incurring many

collisions in a short time frame. To make our comparisons robust to these unlucky paths, outliers

in the data that were 1.5 times larger than the interquartile range of the data were replaced with the

median of the data. We evaluated the normality of the data using visual inspection of Q-Q plots

and histograms as well as measures of the distributions’ skew and kurtosis. Homoscedasticity

was evaluated using Levene’s test. For each metric measured, the assumption of normality or

homoscedasticity was violated, so we conducted all of our tests using a robust one-way repeated

measures 20% trimmed means ANOVA (using the WRS2 package for R). Pairwise post-hoc

comparisons were computed using linear contrasts.

Due to the large sample size in our experiments, we report 95% confidence interval instead

of p-values. As the sample size grows, statistical tests become sensitive to small differences

between samples, and the p-value becomes unreliable as it approaches 0. Confidence intervals,

however, become narrower as the sample size grows, which means they are able to scale with

the sample size and are still reliable for experiments with large samples. Furthermore, reporting

confidence intervals allows for easier comparisons with future work if they also report confidence

intervals, since the interval provides numerical bounds on the differences between conditions

[124].

The results are shown in Table 3.4, with discussions in subsequent sections. Since the
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distance walked between resets depends on the number of resets, we do not present the full

analyses of the distance walked. Instead, we only include the average differences in distances

walked (see Table 3.4). Most of the discussion is limited to comparing ARC to APF, since it is

already well-established that APF outperforms S2C [11, 205]. A confidence interval that does

not contain 0 in its range [CI lower, CI upper] is considered to be significant. Thus, we found

significant differences between all groups in our post-hoc tests. The common pattern seen in the

results is that ARC outperforms APF and S2C, while APF outperforms S2C. One condition for

which this was not the case is the alignment metric in Environment C.

Environment A
Number of resets Distance walked between resets Average alignment score

Redirection Controller ψ̂ CI lower CI upper ψ̂ CI lower CI upper ψ̂ CI lower CI upper
S2C [83] vs. ARC 16.983 14.066 19.901 -14.163 -17.857 -10.470 1.290 1.266 1.312
APF [205] vs ARC 5.750 2.686 8.814 -8.809 -12.967 -4.651 0.492 0.465 0.519
S2C [83] vs APF [205] 11.617 9.148 14.086 -5.822 -6.808 -4.836 0.801 0.789 0.813

Environment B
Number of resets Distance walked between resets Average alignment score

Redirection Controller ψ̂ CI lower CI upper ψ̂ CI lower CI upper ψ̂ CI lower CI upper
S2C [83] vs. ARC 46.867 32.784 60.950 -0.507 -0.630 -0.385 0.808 0.778 0.838
APF [205] vs ARC 11.317 3.449 19.184 -0.130 -0.237 -0.023 0.761 0.747 0.774
S2C [83] vs APF [205] 36.408 23.560 49.256 -0.382 -0.502 -0.263 0.033 0.002 0.065

Environment C
Number of resets Distance walked between resets Average alignment score

Redirection Controller ψ̂ CI lower CI upper ψ̂ CI lower CI upper ψ̂ CI lower CI upper
S2C [83] vs. ARC 2139.983 2062.215 2217.752 -3.719 -3.792 -3.645 -1.036 -1.060 -1.012
APF [205] vs ARC 137.108 124.065 150.152 -2.296 -2.420 -2.171 -0.109 -0.131 -0.087
S2C [83] vs APF [205] 2005.500 1928.841 2082.159 -1.414 -1.488 -1.339 -0.928 -0.961 -0.894

Table 3.4: The results of pairwise post-hoc comparisons between controllers, computed using
linear contrasts and reported using confidence intervals due to the large sample size [124]. For
each metric, ψ̂ is the difference in estimated means between the two groups (estimate of the true
mean). CI lower is the lower bound of the confidence interval on this difference, and CI upper
is the upper bound. Narrower intervals indicate a more precise estimate of the true mean. We
can interpret a cell as the estimated difference between the group means (ψ̂), and CI lower and
CI upper to represent that on 95% of samples, the true difference in means between the groups
will fall in the range [ψ̂ − CI lower, ψ̂ + CI upper]. For a given row that compares Algorithm X
vs. Algorithm Y, a positive ψ̂ value indicates that Algorithm X scored more than Algorithm Y by
that ψ̂, while negative a value indicates that Algorithm X scored lower than Algorithm Y by that
ψ̂, bounded by CI lower and CI upper.
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3.5.1 Experiment 1 (Environment A)

3.5.1.1 Number of resets

The robust repeated-measures ANOVA revealed a significant effect of redirection controller

on the number of resets in Environment A F (1.68, 98.95) = 126.1711, p < .0001. ARC

outperformed both S2C and APF because it was usually able to steer the user on the same virtual

paths as S2C and APF, but with fewer collisions. We noticed that ARC sometimes performed

worse than APF. However, ARC was also sometimes able to achieve perfect alignment and steer

users along paths with no collisions, which APF and S2C were not able to do.

In this experiment, APF outperformed S2C. However, in the implementation of APF by

Thomas et al. [205], they did not find significant differences in the number of resets between

APF and S2C in Environment A. Since APF steers the user towards the center of the room, it

is expected that APF and S2C will have similar results, as they did in [205]. The difference in

performance between APF and S2C is possibly explained by the stronger curvature gains applied

by APF, since our implementation of S2C [83] includes gain smoothing, whereby curvature gains

transition gradually between values instead of instantly applying the strongest gain, as is done in

APF [205].

3.5.1.2 Average alignment

The robust trimmed means ANOVA revealed a significant effect of steering controller

on the user’s average alignment F (1.39, 82.19) = 10870.26, p < .0001. The user’s average

alignment score was usually lower when they were redirected with ARC than when they were

redirected with either APF or S2C. Neither APF nor S2C is designed using concepts of alignment,

so they should not be expected to achieve higher alignment scores than ARC does. We also
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observed that user’s alignment was consistently low regardless of the path, which signals the

reliability of ARC in making the state at least close to aligned.

3.5.1.3 Average Distance Walked Between Resets

There was a significant effect of controller on the distance walkedF (1.09, 64.09) = 57.9766, p <

.0001. A boxplot of the average distance walked between resets for each controller is shown

in Figure 3.11, and the precise difference between controllers is shown in Table 3.4. When

navigating with ARC, the user was able to walk further without colliding with a physical obstacle

when compared with APF and S2C. The long upper whisker and the dots representing outlier

paths indicate that for some paths, the simulated user was able to walk over 45m before colliding

with an obstacle, which shows that ARC is able to deliver VR experiences with very few resets.

3.5.1.4 Qualitative Evaluations

The heat map of the physical space for Environment A is shown in Figure 3.5. For all

conditions, the user spent most of their time near the center of the environment. This is what S2C

is designed to do, and APF reduces to S2C in empty environments, so this is no surprise. One

interesting thing to note, however, is that when the user is steered using ARC, they spend less

time at the center of the room than with S2C and APF.

We observed differences in the average curvature gain applied by the controllers (Figure 3.6).

The implementation of APF we used [205] always applies maximum curvature gain. However,

S2C and ARC do not always apply the maximum curvature gain. The average curvature gain for

S2C is always above 6◦/s, which is still fairly high considering the perceptual limit is ≈ 7.6◦/s.

On the other hand, ARC is able to apply curvature gains much lower than the perceptual limit

and with high consistency, mostly ranging from 3◦/s to 6◦/s. All of the average gains applied by
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Figure 3.5: A heat map of the user’s physical position across all paths for each controller in
Environment A. Yellow tiles indicate the most time spent at that location, while purple tiles
indicate the least amount of time. S2C and APF steer the user such that they spent the large
majority of their time in the center of the room, while ARC allows the user to visit each region
of the room more evenly.

ARC are below 7◦/s.

3.5.2 Experiment 2 (Environment B)

3.5.2.1 Number of resets

The robust ANOVA revealed a significant effect of controller on the number of resets

F (1.6, 94.42) = 56.0129, p < .0001. ARC and APF have somewhat similar performances,

although ARC still resulted in significantly fewer resets than APF. Furthermore, the interquartile

range for the number of resets is lower for ARC than it is for APF, supporting the notion that

ARC delivers a consistent locomotion experience that is robust to different virtual paths.

3.5.2.2 Average alignment

A significant effect of redirection controller on the user’s average alignment was found

F (1.44, 84.85) = 3484.467, p < .0001. The same trend seen in Environment A for the average

alignment score is also seen in Environment B. ARC achieves a noticeably lower alignment score,

which shows that ARC is able to successfully steer the user to a more aligned state.
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Figure 3.6: A histogram of the average curvature gain applied by each controller for each path in
Environment A. The implementation of APF we used always applies the same gain, while S2C
and ARC apply lower gains on average. S2C still applies gains fairly close to the perceptual
threshold (≈ 7.6◦/s), but ARC is able to steer the user on paths with fewer collisions and
significantly reduced curvature gains. Most of the gains applied by ARC fall in the 3◦/s − 5◦/s
range, showing that ARC only applies the gains necessary to avoid collisions and maintain
alignment.

3.5.2.3 Average Distance Walked Between Resets

There was a significant effect of steering algorithm on the average distance walked between

resets F (1.9, 112.05) = 58.9188, p < .0001. A plot of the average distances walked between

resets for all paths with all controllers is shown in Figure 3.11. The results of post-hoc tests to

determine the differences between controllers is shown in Table 3.4. The boxplot for the physical

distances walked in Environment B shows that ARC achieves a higher median distance than

APF and S2C, but the largest average distances afforded by ARC are not as big as the longest

distances walked with APF. This suggests that APF may be more suited than ARC for navigation

in environments with corridors, like Environment B, but additional studies should be conducted

to confirm this.
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Figure 3.7: A heat map of the physical locations visited by the user in Environment B when
steered with each controller. Yellow tiles indicate more visits to a region, while purple tiles
indicate less time spent in a region. Obstacles are shown in black. S2C and APF keep the user
concentrated near the center of the room since it is the most open space in all directions, while
ARC is able to utilize more of the space and steer the user along all corridors in the room. ARC
has some tendency to keep the user near the north wall of the room, which we suspect is due to
the user getting stuck in between obstacles, but the exact cause is not clear.

3.5.2.4 Qualitative Evaluations

The physical position data showed differences between algorithms in where they steered

the user (see Figure 3.7 for heat map visualizations). S2C and APF have very similar heat maps

since both algorithms steer the user towards the center of the space. Interestingly, the user is

able to visit most areas of the room using ARC, but there is a tendency to keep the user in the

upper-left corner of the room. It is possible that ARC is getting stuck between obstacles. If that

is the case, however, we would expect that the user gets stuck uniformly across the room due to

their random starting locations, rather than getting stuck in one corner.

The average curvature gains showed a similar pattern as they did in Environment A (see

Figure 3.8). S2C and ARC apply weaker curvature gains than APF. One difference between

Environment A and B is that the distribution of gains applied by ARC in Environment B is much

smaller than it was in Environment A, which is likely because ARC was not able to achieve
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Figure 3.8: A histogram of the average curvature gain applied for each path with each controller
in Environment B. As in Environment A, APF applies a constant curvature gain when the user
is walking. S2C and ARC apply gains with an average in the range of 4◦/s − 6◦/s, with ARC
applying gains all gains at a lower intensity than about half of the gains applied by S2C. Note
that the lowest gains applied by S2C are lower than those of ARC.

perfect alignment and thus was not able to apply small gains while also lowering the user’s

alignment score.

3.5.3 Experiment 3 (Environment C)

3.5.3.1 Number of resets

There was a significant effect of controller on the number of resets F (1.04, 61.34) =

4186.948, p < .0001. ARC performs dramatically better than APF and S2C, with a much smaller

spread in the number of collisions. Paths steered by APF all have at least as many collisions as

paths steered by ARC and are sometimes more than twice as bad as the worst path for ARC.

3.5.3.2 Average alignment

We found a significant effect of steering controller on the user’s average alignmentF (1.04, 61.34) =

4186.948, p < .0001. An interesting pattern seen in the alignment scores for Environment C is
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that S2C scores the best (lowest) average alignment of all the controllers, and ARC has the

highest alignment score. This is surprising because neither S2C nor APF is designed to work

based on alignment, but ARC is. Even though ARC has the worst average alignment score of all

the controllers in Environment C, it undoubtedly has the best performance in terms of number

of collisions and physical distance travelled between resets. This disagreement in the metrics

suggests that the alignment metric we used in this study may not be a good representation of an

alignment-based controller’s ability to keep the system aligned and avoid collisions. We stress

that we do not believe this means the alignment-based methods ARC uses to steer the user are

flawed, since all other results in this section indicate that ARC does work well compared to other

controllers. It may simply be the case that reporting the averaged sum of the user’s forward and

lateral alignment is not a good way to measure a controller’s alignment capabilities since the

results from Environment C show that it is possible for a controller that does not use alignment

to have a better alignment score. Another possible explanation for the differences in average

alignment seen for Environment C is that the amount of distances we sample to compute distance

to obstacles (k = 3, see subsubsection 3.3.1.1) may not be enough to accurately capture proximity

in this environment. Since this work is only the second to formally study concepts of alignment,

our alignment metric can likely be improved.

3.5.3.3 Average Distance Walked Between Resets

A robust trimmed-means ANOVA revealed a significant effect of controller on the average

physical distance walked by the user between resets F (1.52, 89.44) = 5855.824, p < .0001.

Boxplots showing the distributions of average distances walked between resets for all controllers

are Environment C is shown in Figure 3.11, and the results from post-hoc significance tests are in
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Figure 3.9: A heat map of the simulated user’s location in the physical environment when
exploring a virtual environment using three different redirection controllers. Yellow tiles
represent a large amount of time spent in that region, and purple tiles represent a small amount of
time spent in that region. The Alignment-based Redirection Controller (ARC) allows the user to
utilize more of the physical space while exploring the virtual world compared to S2C and APF.
This means that users spends less time being reset and more time walking through the physical
environment, when steered with ARC than with S2C or APF. This is supported by the results for
the number of collisions and distance walked.

Table 3.4. ARC outperforms APF and S2C, and the results for ARC are more consistent than they

are for APF, though there is not as dramatic a difference as there was for the number of resets.

The number of resets for Environment C shows that ARC performs much more consistently than

APF, but the average distance between resets for Environment C, while it shows the same overall

trend, suggests that the difference in consistency is not as large as it seemed from the number of

resets, highlighting the importance of using multiple performance metrics.

3.5.3.4 Qualitative Evaluations

Upon observing the physical position heat maps (Figure 3.9), we noticed that ARC utilizes

more of the PE for navigation than do APF or S2C, but there is still a bias towards the leftmost

region of the room. Visual inspection of the random starting positions in the PE confirmed

that the bias was not due to the starting position, so more work should be done to get a better

understanding of the biases of ARC.
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Figure 3.10: The average curvature gain applied by each controller for all paths in Environment
C. The same trend as in Environment B is seen here, where APF has a higher steering rate than
S2C and ARC. One difference between the steering rates in Environment B and C is that the
gains applied by S2C and ARC are in a higher range (6◦/s − 7◦/s) in Environment C than they
were in Environment B (4◦/s− 6◦/s).

We inspected the frequency plot of gains applied by each controller across all paths in

Environment C (Figure 3.10). All gains applied by both ARC and S2C are lower than those of

APF, with ARC applying the lowest gains of all, while applying stronger gains less frequently

than S2C.

3.5.4 Proof of Concept Implementation

We implemented ARC in a VR system using an Oculus Quest and the Unity 2019.4.8f1

game engine. Our proof of concept implementation shows that ARC works as intended in real VR

systems, but we note that a full user study should be conducted before drawing more conclusions

about ARC in VR systems. In both environments that we tested, the user’s virtual position started

centered along the south wall of the VE, and the user was instructed to walk in a straight line

forward in the VE.
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The first PE/VE pair was intentionally designed to be fairly simple in order to verify that

ARC steers the user as it should. The user’s physical position started in the southeast corner of

the PE. Once the user started walking forward, they were steered to the left, away from the east

wall of the PE, using curvature gains. The user was steered away from the east wall in order to

improve their alignment with the virtual state, since the virtual user was not beside any walls.

In the second PE/VE pair, the user’s physical location started in the southwest corner

of the physical room. Similarly to the first environment, the user was steered away from the

nearby physical wall. Once their virtual position was between the two obstacles in the VE,

ARC continued to steer the user to the right with curvature gains, in an effort to minimize the

misalignment between the user’s physical and virtual states. When the user walked past the virtual

obstacle on the left, ARC steered the user slightly towards the left to improve their alignment.

The proof of concept implementation shows that our algorithm is able to run in real time

without interfering with the user’s ability to travel on an intended virtual path, which is a crucial

requirement for redirection controllers. Additionally, ARC is simple enough such that it can be

used on each frame without negatively impacting the frame rate of the system.

3.6 Discussion

We found that a redirection controller based on alignment can be a very effective alternative

to traditional controllers that always try to steer users away from physical obstacles. Our novel

alignment-based redirection controller, ARC, outperformed current state-of-the-art methods in

all environments that we tested for all metrics except for average alignment in Environment C.

In addition to being able to deliver a locomotion experience with fewer collisions and further

distances walked between collisions, ARC steers the user with curvature gains that are less intense
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than those applied by other controllers. ARC achieves this high performance using just three

distance calculations from the VE and three from the PE, which allows it to easily run in real

time. Using information from the VE has usually only been done by predictive controllers, but

we were able to develop a reactive controller that leverages instantaneous information from the

VE for large performance benefits, and does not require complex predictions about the user’s

behavior.

We also presented Complexity Ratio (CR), a new metric to measure the relative complexity

of a pair of physical and virtual environments by describing the density of obstacles in the

environments. The relative complexity of environments is an important factor in a controller’s

ability to steer the user, but we are unaware of any RDW studies that have explicitly defined

and discussed any notions of relative complexity and how it affects controllers’ performance.

Our work presents the first step in this direction. We showed that traditional controllers tend to

perform worse as the difference in complexity between the PE and VE grows. This agrees with

prior observations that the shape of the environment affects a controller’s performance [7, 83].

ARC comes with many advantages over traditional steering policies. First, ARC decreases

the likelihood that a user experiences simulator sickness due to strong redirection. While the

exact cause of simulator sickness is not known, one of the main theories is that simulator sickness

arises when there is a conflict between visual, vestibular, and proprioceptive stimuli [108]. RDW

creates this exact perceptual conflict, so it is not uncommon for users to feel simulator sickness

when being redirected. Although we know it is safe to apply redirection within the perceptual

thresholds, these thresholds will vary from user to user. Thus, the we cannot assume that commonly

purported threshold values will be suitable for all users. By only applying redirection when

the user is misaligned, and only applying gains at the intensity necessary to achieve alignment,
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ARC redirects the user less than a traditional controller does, which decreases the likelihood of

simulator sickness and creates a more comfortable experience.

Steering by alignment provides passive haptics by enabling the user to interact with the

physical environment [206, 207]. Passive haptics are physical objects that provide feedback to

the user through their shape and texture [125]. Passive haptics can significantly increase a user’s

feelings of presence and spatial knowledge transfer [93]. Passive haptics and RDW have typically

been considered mutually exclusive due to their conflicting requirements. However, Kohli et al.

[107] demonstrated that it is possible to combine the two if we have the appropriate environment

configurations. Their demonstration was in a carefully crafted environment designed specifically

to enable passive haptics. Alignment can enable passive haptics in arbitrary environments, which

may allow for more immersive experiences that combine comfortable locomotion through redirection

with realistic sensations through passive haptics. The efficacy of using alignment to combine

passive haptics and RDW should be studied through formal user studies, since alignment currently

does not consider the shape and orientation of obstacles, which are important factors for effective

passive haptics [107].

3.7 Conclusions and Future Work

In this work we presented ARC, a novel controller based on alignment. Through extensive

simulation-based experiments, we showed that our controller was able to outperform state-of-

the-art algorithms in both simple and complex environments. Furthermore, our algorithm applied

redirection gains at a lower intensity than other controllers, which reduces the chances of inducing

simulator sickness and improves the usability of RDW systems for people with low RDW perceptual

thresholds. We also formalized the notion of relative environment complexity between the physical
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and virtual environments, which to the best of our knowledge had not yet been done. To this end,

we introduced Complexity Ratio (CR), a novel metric to measure the difference in navigation

complexity between the physical and virtual environments, and showed how CR influences controller

efficacy.

There are many avenues for future work. The heuristics that ARC uses are fairly simple,

so it is likely that a more complex algorithm will yield a better performance. For example, a finer

approximation of the user state using more distance samples may yield better results. Additional

work should also be done to get a better understanding of the biases that ARC exhibited, so

we can better predict how a controller will perform in an environment. Extending ARC to

dynamic scenes with moving obstacles or multiple users is also an interesting area for future

work. Furthermore, ARC should also be evaluated with full user studies now that we know that

alignment can be an effective method for redirection. Future work should also investigate ways

to use concepts of alignment to combine passive haptics with redirected walking.

It is currently quite difficult to compare controllers from different researchers without

implementing them oneself, since experiments are often conducted under very different conditions.

The ability to compare controllers may help the community to develop new controllers more

effectively, since direct comparisons will highlight the strengths and weaknesses of controllers.

To enable comparisons between RDW controllers, work should be done to develop accurate

performance metrics and standard benchmarks. It is likely that development of good metrics

and benchmarks will require a deep understanding of the complicated interactions between the

PE, the VE, the virtual path, and the controller, since any good metrics and benchmarks will need

to encapsulate these interactions.
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Figure 3.11: Boxplots of performance metrics for each controller in each environment. The
boxplots show the median and IQR for the data. A significant difference was found between
all algorithms in all environments. ARC outperformed APF and S2C for all metrics in all
environments except for average alignment in Environment C.
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Figure 3.12: The relationship between the environment complexity and the number of resets
incurred by a redirection controller. ARC consistently has a better performance than S2C and
APF for all environment complexities. The performance difference between ARC and the other
algorithms is quite large for environments A and C, but the difference decreases drastically for
Environment B. It is not clear why Environment B causes the controllers to have a more similar
performance, but it may be due to the relatively few pathing options afforded by the narrow
hallways of Environment B. Environments A and C both include regions with a fairly large
amount of open space, unlike Environment B (see Figure 3.4).
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Figure 3.13: A screenshot of the user’s state and recent path in Environment A for each controller.
Each simulated user travelled on the same virtual path in this figure, and the screenshot was taken
at the same time in the simulation. When steered with ARC, the system is able to achieve perfect
alignment, and the user’s physical state and recent path matches the virtual counterpart. APF
and S2C are not able to achieve alignment, and their paths and states are very dissimilar to the
virtual counterparts. The state of the virtual user is not the same across all conditions because the
virtual user pauses while the physical user reorients after a collision, and each controller incurred
a different number of collisions.
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Chapter 4: Visibility-Based Redirection

Figure 4.1: A visualization of the geometric reasoning that our redirection controller performs
on every frame in order to steer the user in the physical space. First, the controller computes the
visibility polygon for the user’s physical and virtual locations (the regions bounded by the blue
and red edges, respectively). Next, the controller computes the region of space (part of the red
visibility polygon) in front of the user that the user is walking towards in the virtual environment
(yellow region in the right image). By comparing the areas of the regions, our controller computes
the region in the physical space (yellow region in the left image) that is most similar to the virtual
region the user is heading towards. Finally, the controller applies redirected walking gains to
steer the user to walk towards the highlighted region in the physical space. Black dashed arrows
indicate the user’s trajectory in the environment. Our algorithm yields significantly fewer resets
with physical obstacles than prior algorithms.

In this chapter, we present a new approach for redirected walking in static and dynamic

scenes that uses techniques from robot motion planning to compute the redirection gains that

steer the user on collision-free paths in the physical space. Our first contribution is a mathematical

framework for redirected walking using concepts from motion planning and configuration spaces.

This framework highlights various geometric and perceptual constraints that tend to make collision-

free redirected walking difficult. We use our framework to propose an efficient solution to the
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redirection problem that uses the notion of visibility polygons to compute the free spaces in the

physical environment and the virtual environment. The visibility polygon provides a concise

representation of the entire space that is visible, and therefore walkable, to the user from their

position within an environment. Using this representation of walkable space, we apply redirected

walking to steer the user to regions of the visibility polygon in the physical environment that

closely match the region that the user occupies in the visibility polygon in the virtual environment.

We show that our algorithm is able to steer the user along paths that result in significantly fewer

resets than existing state-of-the-art algorithms in both static and dynamic scenes.

4.1 Introduction

Natural walking as a means to explore virtual environments (VEs) is generally preferred

over other artificial locomotion interfaces such as flying [209] or teleportation since natural

walking improves the user’s sense of presence and task performance in the VE. Redirected

walking (RDW) [157] is a locomotion interface that affords natural walking in virtual reality

by imperceptibly steering the user along physical paths that differ from their virtual counterparts.

Over the years, many researchers have developed different algorithms (known as RDW controllers)

that apply RDW to steer the user to avoid collisions with physical obstacles that they cannot see

or detect. If a collision is imminent, the RDW system applies a “reset” to reorient the user away

from the nearby obstacle. Although significant progress has been made, even the best controllers

are unable to guarantee a reset-free experience in arbitrary static and dynamic environments.

Redirection controllers generally fall into one of three categories: reactive, predictive, or

scripted [140]. Reactive controllers steer the user based only on information available at the

current or previous frames. Predictive controllers steer the user based on the user’s predicted
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future movement in the VE, and scripted controllers steer the user as they walk along a pre-

defined path in the VE. Reactive controllers are usually preferred since they can be deployed in

arbitrary environments and often require little to no additional setup (such as environment pre-

processing). However, their ability to steer the user away from obstacles is usually lower than that

of predictive or scripted controllers since reactive controllers must operate using less information.

Predictive controllers can outperform reactive controllers, but they rely on accurate predictions of

the user’s movements. Recently, a new paradigm of redirection controllers based on the concept

of alignment has emerged. Instead of steering the user away from physical obstacles, alignment-

based controllers steer the user in an attempt to minimize the difference between the physical and

virtual environments. These controllers have been shown to be effective for lowering the number

of resets [231] and enabling passive haptics for increased immersion [206, 207].

Much of the prior work on RDW controllers focuses on users exploring static physical and

virtual environments. Some work that instead focuses on dynamic scenes mostly looks at multi-

user RDW systems [8, 11, 54]. Chen et al. [33] proposed ideas on how redirection controllers can

steer the user away from moving physical obstacles. Though there has been work on dynamic

physical scenes as well as multi-user systems, there are no known solutions that work well in all

dynamic environments with no assumptions on obstacles’ motions.

Main Results: We provide a mathematical framework for the redirected walking problem,

as well as a novel approach to redirected walking in static and dynamic environments. We frame

the redirection problem as optimizing the user’s path in the physical environment by applying

the appropriate redirection at each frame. Our formulation makes it easy to develop effective

controllers and conduct rigorous analyses to better understand a redirection controller’s behavior.

Using this formulation of the redirection problem, we also introduce a RDW controller that uses
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a novel alignment metric based on visibility polygons. That is, given the layouts of the physical

and virtual environments and the user’s location in them, our controller computes the region of

walkable space visible from the user’s position in both environments. With these representations

of the local space that is available to the user, our controller steers the user towards a region in

the physical space that is most similar to the region they are approaching in the virtual space. We

found that our controller is able to significantly reduce the number of times that the user has to

reset their orientation when they come too close to physical obstacles. Our main contributions in

this work include:

• A mathematical framework for the redirected walking problem based on concepts from

robot motion planning. We formulate it as an optimization problem, where the aim is to

transform a virtual path to an optimal physical path, subject to constraints depending on

the user and the information available.

• A novel redirected walking controller that steers the user based on alignment, with heuristics

derived from visibility polygons. Our algorithm achieves significantly fewer resets than the

current state-of-the-art controllers.

• Comparisons of our algorithm to the state-of-the-art algorithms in both static and dynamic

simulated, single-user scenes.

4.2 Prior Work and Background

Locomotion is a fundamental problem in virtual reality (VR) since the user wishes to

explore a VE that is usually much larger than the physical environment (PE) they are in. Furthermore,

the locations of obstacles in the PE are usually not the same as the locations of obstacles in the
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VE. This creates a problem when the user wishes to travel along a collision-free virtual path but

doing so may force them to walk into unseen physical obstacles. Many different techniques for

locomotion have been developed [94, 149, 157, 188, 198, 209], but in this work we focus on

the RDW technique developed by Razzaque et al. [158]. A recent review of VR locomotion

interfaces can be found in [126].

By slowly rotating or translating the VE around the user while they walk, RDW allows users

to explore virtual environments while located in smaller physical environments [157]. These

rotations and translations are controlled by parameters called gains. In order to remain on their

intended virtual path, users will subconsciously adjust their physical path to counteract the VE

movements. The three main gains are translation, rotation, and curvature gains. Translation gains

translate the VE around the user while they walk, causing their physical path to be longer or

shorter than their virtual path, depending on the direction of the VE translation. Rotation gains

rotate the VE around the user while they turn in place, which causes their physical rotation to be

larger or smaller than their virtual rotation one, depending on the direction that the VE rotates.

Similarly, curvature gains rotate the VE around the user while they are walking, which causes

them to veer on a physical path with a different curvature than their virtual one. The faster the

VE rotates or translates, the more the user’s physical path will deviate from their virtual path,

and the easier it will be to steer the user away from physical obstacles. However, it is important

that the gains are not large enough that the user can perceive the rotations since this will make

it harder to explore and can lead to simulator sickness [187]. Other gains such as bending gains

[112] have been developed, but they are less well-understood than translation, curvature, and

rotation gains so we do not consider them in this work.
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4.2.1 Redirection Controllers

A redirection controller is an algorithm that applies RDW gains to steer a user along a

physical path, with the intention of minimizing the number of times the user collides with a

physical obstacle [140]. A controller consists of a steering component and a resetting component.

As the name suggests, the steering component is responsible for applying gains to steer the user in

the physical space while walking. The resetting component is responsible for initiating a “reset,”

wherein the user’s virtual movements are disabled until they turn in place to reorient themself in

the physical world. Resets are initiated when the user gets too close to any physical obstacle.

Many redirection controllers operate on different assumptions and with different amounts

of information available to them. Consequently, controllers have traditionally been classified

as reactive, predictive, or scripted [140]. Reactive controllers steer the user according to the

information available at the current frame or any prior frames. These controllers are typically

designed to function in arbitrary environments, with little to no pre-processing or setup required.

Examples of reactive controllers include steer to center [157], steer to orbit [83, 157], steer to

multiple targets [157], and controllers based on reinforcement learning [29, 117, 192] or artificial

potential fields [11, 132, 205]. Predictive controllers steer the user according to the information

available on the current/prior frames and a prediction of the user’s future path in the VE. These

types of controllers can perform better than reactive controllers, but their performance depends on

the accuracy of the path prediction. Examples of predictive controllers include those developed

by Zmuda et al. [243], Nescher et al. [136], and Dong et al. [54]. Scripted controllers are

controllers that steer the user as they travel along designated paths in the VE [6, 241]. Scripted

controllers usually result in the fewest resets, but they require the researchers to design and
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plan the environments carefully. As a result, these controllers cannot be generalized to arbitrary

environments.

Although the RDW community has developed this taxonomy for redirection controllers,

more recent controllers that involve more complex algorithms or use new types of information are

not easily categorized as reactive, predictive, or scripted. Thomas et al. [206, 207] and Williams

et al. [231] introduced redirection controllers that leverage the concept of alignment. Alignment

is the concept of comparing the physical and virtual environments according to some environment

feature(s) (such as the location of a user relative to an object). In other words, alignment measures

the similarity of the two environments according to these environment features. It should be

noted that other researchers have used ideas similar to alignment by editing the VE to match the

physical one [174] or by making assumptions about the user’s motion based on the VE [243].

The alignment-based controllers developed by Thomas et al. and Williams et al. steer the user

with RDW gains, but the steering decisions are guided by the degree of similarity (alignment) of

the user in the physical and virtual environments. Furthermore, some controllers make implicit

assumptions about the virtual reality system and incorporate these assumptions into the steering

policy. Williams et al. [231] assume that the user walks along a collision-free path in the VE,

while controllers based on reinforcement learning train an algorithm that implicitly learns a model

of the user’s locomotion behavior and steers the user according to this model.

4.2.2 Motion Planning and Visibility Polygons

Motion planning is the problem of computing a collision-free path through an environment

that takes an agent (traditionally, a robot) from its initial configuration to a goal configuration

(Section 2.3). In our approach, we use techniques from motion planning literature to compute
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collision-free paths for the user in the physical space and the virtual space. In particular, we

perform geometric reasoning in each of these 2D spaces by using visibility polygons. The

visibility polygon for a point p is the set of all points in the plane that are visible from p. The

visibility polygon thus encapsulates the entire region of space that has line-of-sight visibility from

the point p. Depending on the layout of the space, the visibility polygon may be unbounded. If we

consider a human (or robot) observer located at position p, the visibility polygon can be thought

of as the entire region of space that the observer can see. The visibility polygon can be used to

compute the free space corresponding to a point robot in an environment with polygonal obstacles

[73]. Thus, the visibility polygon provides a well-defined region that we can use to compute a

local path in the environment to move the user closer to their goal without any collisions.

Since human locomotion is largely dominated by the information that is immediately available

to the person [133], we use the visibility polygon to perform geometric reasoning in a user’s local

surroundings. In the architectural design literature, researchers have used visibility polygons

(which they refer to as “isovists”) to describe an environment and then studied how people’s

locomotion patterns change as the environment structure changes [14]. Wiener et al. [228]

showed that the complexity of the visibility polygon (characterized by its jaggedness) was correlated

with an observer’s task performance and locomotion speed in the environment. Christenson et

al. [38] introduced occlusion maps, which are maps that define the regions visible over multiple

points in an environment, to study how the layout of an environment changes as the observer

moves to a new position. Within the RDW community, Zank et al. [242] used visibility polygons

to predict the areas of the VE that the user might walk towards next.
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4.3 Redirected Walking Using Visibility Polygons

To aid in the exposition of our redirection controller, we begin with formal definitions and a

mathematical formulation of the RDW problem. A formal characterization of the RDW problem

provides us with a framework that we can use to conduct more rigorous analyses of and reasoning

about RDW steering algorithms. Note that the definitions we use are adapted from those used in

the robot motion planning literature [115].

4.3.1 Definitions and Notation

In virtual reality, the user is simultaneously located in a PE, Ephys, and a VE, Evirt.

For each environment, the user state describes their location p and heading direction θ in the

environment. We denote the user’s state as the pair q = {p, θ}. The user’s state at a particular

time t is denoted by qt = {pt, θt}. Thus, the user’s state at time t in Ephys is denoted by

qtphys = {ptphys, θtphys}. The path that a user walks along in an environment is represented by

an ordered set of states Q = {q0, q1, ..., qt}. For brevity, we denote the physical and virtual paths

as pathphys = {q0phys, ..., qtphys} and pathvirt = {q0virt, ..., qtvirt}, respectively.

The user’s state in an environment is also referred to as their configuration. The configuration

space C (or C-space for short) is the set of all possible configurations of the user. Some configurations

in the C-space correspond to the user colliding with an obstacle in the environment. The obstacles

in an environment occupy the obstacle region, O ⊂ E. The set of all colliding configurations q

is the obstacle space Cobs:

Cobs = {q ∈ C | q ∩ O ≠ ∅}. (4.3.1.1)

That is, the obstacle space Cobs is the set of all configurations q for which the user intersects with

an obstacle in the obstacle region O. The free space Cfree is all of the other configurations that
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are not in the obstacle region. We define the free space as Cfree = C \ Cobs. The free space and

obstacle space of the PE are denoted Freephys and Obsphys, while the free and obstacle spaces

of the VE are denoted Freevirt and Obsvirt. Finally, note that Ephys = Freephys ∪ Obsphys and

Evirt = Freevirt ∪Obsvirt.

4.3.2 Redirected Walking and Configuration Spaces

Redirected walking is typically implemented by rotating the VE around the user as they

walk, so it is natural to think about a redirection controller as an algorithm that rotates the VE

according to some criteria on every frame. Instead, our goal is to frame redirection controllers

in terms of the simultaneous computation of collision-free trajectories in the physical and virtual

spaces. We can visualize this as superimposing the user’s virtual path onto their physical location

and applying RDW gains that transform the superimposed path such that the user avoids any

obstacles that the path intersects with (see Figure 4.2). In our figures, black shapes represent

obstacles, white space is any walkable region in the environment, and the colored regions represent

the free space (i.e. the subset of the walkable region visible from the user’s position).

With our goal in mind, we can now formally describe the redirection problem using the

definitions from Subsection 4.3.1. Given two environmentsEphys andEvirt, the user’s configuration

in both environments are qphys and qvirt, respectively. The user explores Evirt by following a

collision-free path pathvirt ∈ Freevirt. This path corresponds to some physical path pathphys ∈

Ephys, for which it is possible that pathphys ∩ Obsphys ̸= ∅. If pathphys ∩Obsphys ̸= ∅, we wish

to find some new optimal path path∗phys such that path∗phys ∩ Obsphys = ∅, i.e. path∗phys ∈

Freephys. Let RDW(path) be a generic redirection function which applies translation (gt),

curvature (gc), or rotation (gr) gains at each timestep qt ∈ path to yield a new path path∗.
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Figure 4.2: Visualization of the redirected walking problem. If the user tries to walk on the virtual
path pathvirt with no redirection applied, they will collide with the obstacle to their left in the
physical space. After applying redirection, the user instead walks along pathphys and avoids any
collisions. The free spaces Freephys and Freevirt are shown in blue and red, respectively.

The redirection problem is thus to find some best function RDW*() such that RDW*(pathvirt) =

path∗phys. We seek to develop a redirection controller that executes RDW*(). RDW() is subject

to multiple constraints:

1. Maximum redirection constraint: Since RDW is limited by human perception, the gains

applied by RDW()must be bounded by the user’s empirically measured perceptual thresholds.

This limits how much redirection can be done at any given moment and makes it more

difficult to avoid Obsphys.

2. Geometric deviation constraint: RDW(pathvirt) results in a path pathphys that is geometrically

different from pathvirt, where translation gains change the length and rotation and curvature

gains change the curvature of pathphys relative to pathvirt. Stronger gains correspond to a

greater deviation between pathphys and pathvirt. Stronger redirection gains have a higher
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chance of inducing simulator sickness in the user, so we wish to compute pathphys ∈

Freephys with the weakest gains possible. Geometrically, this is defined as the path with

the lowest deviation from pathvirt.

3. Information constraint: Oftentimes, the user’s future virtual path pathvirt is not known,

which makes optimizing pathphys difficult. Additionally, the user’s PE may not be completely

known, depending on the capabilities of the virtual reality system.

Due to the above constraints, developing the perfect redirection function RDW*() for all pathvirt

is very difficult.

Since it is difficult to develop RDW*(), we must rely on our RDW() function in conjunction

with a resetting function reset(). The resetting function is responsible for prompting the user

to stop walking and reorienting them to a safe configuration in Ephys. Similarly to RDW(),

reset() applies redirection gains to transform pathvirt such that the resulting physical path

is valid, i.e. pathphys ∈ Freephys. However, reset() differs from RDW() in that reset()

alters pathvirt in order to yield a safe pathphys. In practice, this is performed by having the user

turn 360◦ in place inEvirt, while reorienting by some smaller angle inEphys due to rotation gains.

Thus, reset() inserts configurations into pathvirt that cause the user to turn in place in Evirt

while applying rotation gains gr to alter the user’s corresponding physical rotation.

4.3.3 Finding RDW∗() Using Visibility Polygons

In this section, we present a new redirection controller that uses the notion of visibility

polygons to compute RDW(). Our goal is to steer the user along a path in Freephys. The visibility

polygon computed in Ephys at the user’s position pphys is a representation of Freephys that can

be computed in O(n logn) time [49, 199], where n is the number of segments that define the
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boundaries of obstacles in the environment. Thus, in order to take advantage of motion planning

techniques, our controller is based on the visibility polygon.

Considering the problem statement in Subsection 4.3.2, our controller’s goal is to apply a

function RDW(pathvirt)= pathphys such that pathphys is in the physical visibility polygon (which

represents Freephys). Our redirection controller (which executes RDW()) is not predictive, so it

does not have access to the user’s future virtual path pathvirt. This makes it effectively impossible

to compute the optimal physical path path∗phys as described in Subsection 4.3.2, since we cannot

directly transform pathvirt to make it lie within Freephys. To resolve this, we reframe the

redirection problem slightly and use alignment in our redirection function RDW(). Instead of

superimposing pathvirt onto Ephys, we superimpose Freevirt onto Freephys, centered on the user

(both Freevirt and Freephys are represented by visibility polygons). When the user walks in

Evirt, their path in the superimposed Freevirt will correspond to some path within Ephys, and

hopefully within Freephys. Our controller’s goal is now to apply redirection such that Freephys

is transformed to match Freevirt as closely as possible. The intuition here is that the more similar

Freephys is to Freevirt, the higher the chance that the user’s next virtual configuration qt+1
virt will

correspond to a valid physical configuration qt+1
phys ∈ Freephys. This process of superimposing

Freephys and Freevirt is shown in Figure 6.3.

We guide this free space matching process using our alignment metric, which we define

as the area of the free space in front of the user (see subsubsection 4.3.3.3). Note that while we

framed the problem as transforming Freephys, in implementation, we simply apply RDW gains to

change the user’s physical configuration such that their new Freephys is more similar to Freevirt.

The pseudocode that our redirection controller executes on every frame is shown in algorithm 1.

We now provide details of each step of the algorithm.
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(a) Configurations in physical and virtual environments that lead to a collision. After the user walks
forward (rightmost image), they are still in Freevirt but they are no longer inside Freephys, indicating
that there was a collision with a physical obstacle.

(b) Free space configurations in physical and virtual environments that do not lead to a collision. After the
user walks forward (rightmost image), they are still within Freevirt and Freephys, indicating that there
was no collision along the physical path that the user travelled.

Figure 4.3: A visualization of the superimposition of the two free spaces, Freephys (blue) and
Freevirt (red). Regions of Freevirt that do not overlap with Freephys signify regions of the
virtual environment that the user cannot walk to without colliding with a physical obstacle. Our
controller aims to steer the user in Ephys such that Freephys and Freevirt overlap in the region
that the user is walking towards.
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Figure 4.4: An overview of our redirection controller based on visibility polygons. (A) We
compute the visibility polygon corresponding to the user’s position in both the physical (blue)
and virtual (red) environments. After the visibility polygons are computed, they are divided
into regions called “slices” which we use later in our approach to measure the similarity of
the two polygons. (B) The “active slice” in the virtual environment is computed. This is the
slice of the virtual visibility polygon that the user is walking towards (shown in yellow). (C)
The corresponding slice in the physical environment that is most similar to the active slice is
computed. Similarity is measured using slice area. (D) Redirected walking gains are applied
according to the user’s heading to steer them in the direction of the most similar physical slice
that was computed in step (C).

Algorithm 1 Redirection Gain Computation
Result: Redirection gains gr, gt, gc to apply on the current frame.
Pphys = ComputeVisibilityPolygon(Ephys, pphys, θphys)
Pvirt = ComputeVisibilityPolygon(Evirt, pvirt, θvirt)
svirt = GetActiveVirtualSlice(Pvirt, θvirt)
sphys = GetMostSimilarPhysicalSlice(Pphys, s

virt)
gr, gt, gc = GetRedirectionGains(svirt, sphys, θphys)

4.3.3.1 ComputeVisibilityPolygon(E, p, θ)

Given an environment E and a position p and heading θ in that environment, we compute

the visibility polygon using the algorithm described by Suri et al. [199] (note that θ is not used in

this initial computation). The visibility polygon P is defined by a kernel k and a set of vertices

{v0, v1, ..., vn−1}. Here, k is the position of the observer (i.e., the position p in the environment

E). The set of vertices defines the edges of P , where consecutive vertices vi and vi+1 form an

edge.

Once P is computed, it is divided into “slices” si around k according to the order and

position of the vertices of P . The vertices are sorted in counterclockwise order around k,
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(a) A visibility polygon, its vertices, and its
slices {s1, s2, ..., s7}.

(b) A diagram showing some of the components
that are computed for every slice s. Note that we
do not show the average length sl or the kernel
position s[0] in order to reduce visual clutter.

Figure 4.5: A visibility polygon after its slices are computed (Figure 4.5a) and the composition
of one slice (Figure 4.5b).

and slices are defined as the triangles formed by triplets of points {k, vi, vi+1}. If the points

{k, vi, vi+1} are colinear, the slice is instead defined by the next vertex vi+x ∈ P such that x > 1

and {k, vi+1, vi+x} are not colinear. A diagram of these slices is shown in Figure 4.5a.

For each slice s, the following attributes are computed:

• Slice vertices: The vertices {s[0], s[1], s[2]} that define the slice. Note that s[0] = k and

{s[1], s[2]} ⊂ P .

• Slice bisector (sβ): The angle ϕ ∈ [0, 2π) that bisects angle ∠s[1]s[0]s[2].

• Average length (sl): The average length of the two line segments connecting s[1] and s[2]

to s[0]:

sl =
||s[0]− s[1]||+ ||s[0]− s[2]||

2
. (4.3.3.1)
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• Angle offset (so): The angular distance between the user’s heading and the slice bisector:

so = |θ − sβ|. (4.3.3.2)

• Slice area (sA): The area of the triangular slice s.

The composition of a slice is shown in Figure 4.5b. The polygon P , and all of its slices, are

returned at the end of ComputeVisibilityPolygon(E, p, θ).

4.3.3.2 GetActiveVirtualSlice(Pvirt, θvirt)

We define the “active slice” as the slice that the user is walking towards in the VE. For this

work, we assume that the user walks in the direction θvirt that they are facing. Thus, the active

slice svirt is defined as:

svirt = argmin
s∈Pvirt

|sβ − θvirt|. (4.3.3.3)

We return svirt at the end of GetActiveVirtualSlice(Pvirt, θvirt).

4.3.3.3 GetMostSimilarPhysicalSlice(Pphys, svirt)

This function computes the slice sphys ∈ Pphys that is most similar to svirt. Here, we

leverage our similarity metric to measure the alignment of slices in Pphys to the active virtual slice

svirt. Our slices are triangles, so we wish to compute a similarity metric that accurately measures

how similar two triangles are. Furthermore, the slices represent regions of free space that the

user can walk in, so an ideal similarity metric would be able to compare two slices according

to their similarity with regards to both shape and navigability. Measuring shape similarity is a

very well-studied problem in geometric computing [218]. Likewise, the relationship between an

environment’s structure and navigation in that environment is well-studied [43, 80, 133]. Our

goal is to design a metric that can compute the similarity of shapes with respect to the geometric
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structure as well as navigability. Therefore, we use a geometric measure of similarity (slice area),

but we constrain the set of physical slices that we consider according to perceptual heuristics that

tend to guide human locomotion (we only consider slices in the user’s field of view). We chose

slice area over other shape similarity measures since we are primarily concerned with the user’s

proximity to Obsphys, which is described by the slice’s total area.

Given the physical visibility polygon Pphys, we first compute the set of eligible slices,

which we will compare against svirt. This set, denoted S†, is defined as all physical slices for

which the slice’s bisector is less than 90◦ away from the user’s physical heading (this value is

computed when Pphys is constructed):

S† = {s ∈ Pphys | so <
π

2
}. (4.3.3.4)

Once S† is computed, the physical slice that matches svirt most closely is simply the slice with

the area closest to the area of svirt:

sphys = argmin
s∈S†

|sA − svirtA |. (4.3.3.5)

This slice sphys is returned at the end of the function.

4.3.3.4 GetRedirectionGains(svirt, sphys, θphys)

We have now computed the region sphys ∈ Ephys that is most similar to the region svirt ∈

Evirt that the user is heading towards in virtual reality. The final step is to set the rotation gr,

curvature gc, and translation gt gains to steer the user towards sphys.

An optimal direction vector, vo, is defined as:

vo = unit vector(sphysβ ). (4.3.3.6)
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The unit vector(θ) function returns the vector [cos θ, sin θ]T . If the user is rotating in place,

we apply a rotation gain gr. We set gr according to the following rule:

gr =


minRotationGain user is turning away from vo,

maxRotationGain user is turning towards vo,

(4.3.3.7)

where minRotationGain = 0.67 and maxRotationGain = 1.24 [187].

If the user is walking, we apply translation and curvature gains to steer them in the direction

of vo. Specifically, we set the curvature gain gc as:

θ∆ = signed angle(unit vector(θphys), vo)

gc = sign(θ∆)×maxCurvatureRadius.

(4.3.3.8)

Here, signed angle(v1, v2) returns the positive angle between vectors v1 and v2 if the direction

from v1 to v2 is counterclockwise. Otherwise, it returns the negative angle between v1 and

v2. The sign(θ) function returns 1 or −1 depending on if θ is positive or negative. We set

maxCurvatureRadius to 7.5m, which is a commonly-used curvature threshold value in the

RDW literature [7, 83, 205].

We set the translation gain gt according to the ratio between the average lengths of the

physical and virtual slices, and we bound it by the perceptual thresholds for translation gains:

gt = clamp(sphysl /svirtl ,minTransGain,maxTransGain). (4.3.3.9)

Here, the clamp(x, y, z) function returns x, but ensures that it is greater than or equal to the

lower bound y and is less than or equal to the upper bound z. We set minTransGain = 0.86

and maxTransGain = 1.26 since these are commonly-accepted translation gain thresholds

[187, 205].
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4.4 Evaluation

We conducted four experiments to evaluate the performance of our algorithm. For each

experiment, we compared our visibility-based algorithm against the alignment-based redirection

controller (ARC) presented by Williams et al. [231], the artificial potential field (APF) controller

by Thomas et al. [205], and the implementation of steer-to-center (S2C) by Hodgson et al. [83].

Our algorithm’s reset function is the same as the one used by ARC [231]. Both APF and S2C use

the modified reset-to-center algorithm introduced by Thomas et al. [205]. ARC is currently the

best-performing reactive controller, while controllers based on potential-fields also perform fairly

well. We compare against S2C since it is a very common benchmark to compare against in the

RDW literature; however, we note that S2C is not expected to do well in any of our experiments

due to the obstacles present in the PE. The first three experiments involve only static scenes with

no dynamic obstacles. Our fourth experiment investigates controller performance in dynamic

scenes.

It is known that the structure of the environment affects a redirection controller’s performance

[132], so it is important to consider the environments’ layouts when assessing a controller’s

efficacy. There is currently no standard suite of test environments with which we can evaluate our

algorithm, so we opted to test in environments used before to move towards a more standard set of

environments. Furthermore, we wish to test our algorithm in cluttered environments with many

obstacles and narrow passageways, which are challenging scenarios where avoiding obstacles is

non-trivial. Thus, we evaluated our algorithm using two of the environment pairs from Williams

et al. [231]. When choosing our physical environments, we wished to test environments that did

not represent traditional physical tracked spaces which often have very few obstacles. Our goal is
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to test the viability of redirection in unstructured, irregular environments that may be commonly

encountered in the real world, such as an office building with cubicles or a living room with tables

and couches.

The performance metric we use is the number of resets incurred over the entire duration

of the walked path since it is a fairly standard performance metric in the RDW community.

Another common metric is the average virtual distance walked between resets, but this metric

is dependent on the number of resets, so it is slightly redundant to include both metrics in our

evaluation. Before conducting our experiments, we developed three hypotheses:

H1 Our visibility-based steering algorithm will result in fewer collisions than the current state-

of-the-art controllers in static scenes.

H2 Our visibility-based steering algorithm will result in fewer collisions than the current state-

of-the-art controllers in dynamic scenes.

H3 Redirection controllers that use alignment will perform better in physical-virtual environment

pairs that have more local similarity than they will in environment pairs that have less local

similarity.

4.4.1 Environment Pairs

Each experiment had a different pair of physical and virtual environments. The environments

are shown in Figure 5.4. Experiment 1 includes a 12m × 12m physical and 17m × 12m VE

consisting of narrow corridors (see Table 4.1 for exact layout details). Experiment 2 has a

10m × 10m PE with three rectangular obstacles and a 20m × 20m VE with many convex and

non-convex obstacles (see Table 4.2). Using these two environments makes it easier to draw
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Figure 4.6: The layouts of the different environment pairs we tested in our experiments. The
faded circles in the virtual environment for Experiment 4 indicate that the circles change position
over time.

comparisons between our work and that of Williams et al. [231]. Experiment 3 uses the PE from

Experiment 1 and the VE from Experiment 2. We noticed that the pairs of environments used in

Environment B and C in [231] (Experiments 1 and 2 here) appear to have a high degree of local

similarity. That is, the user’s proximity to obstacles will be roughly similar between the physical

and virtual environments. In Environment B, both environments feature only narrow corridors

and angular turns. In Environment C, both physical and virtual environments have irregularity

in the sizes and shapes of obstacles in both environments. Therefore, for our third experiment,

we opted to evaluate the controllers on a mixture between the environments from Experiments

1 and 2 since this would lower the degree of local similarity between the physical and virtual

environments and allow us to test H3.

Finally, in Experiment 4, we used the physical environment from Experiment 2 and an

empty 10m× 10m environment with four dynamic, circular obstacles as the virtual environment

(see Table 4.3). We chose to use a VE with no static obstacles so that we could more easily study
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Experiment 1 (physical)
Boundary (−6,−6), (6,−6), (6, 6), (−6, 6)
Obstacle 1 (−4,−4), (−1,−4), (−1,−1), (−4,−1)
Obstacle 2 (1,−4), (4,−4), (4,−1), (1,−1)
Obstacle 3 (1, 1), (4, 1), (4, 4), (1, 4)
Obstacle 4 (−4, 1), (−1, 1), (−1, 4), (−4, 4)

Experiment 1 (virtual)
Boundary (−11,−6), (6,−6), (6, 6), (−11, 6)
Obstacle 1 (−4,−4), (−1,−4), (−1,−1), (−4,−1)
Obstacle 2 (1,−4), (4,−4), (4,−1), (1,−1)
Obstacle 3 (1, 1), (4, 1), (4, 4), (1, 4)
Obstacle 4 (−4, 1), (−1, 1), (−1, 4), (−4, 4)
Obstacle 5 (−9, 1), (−6, 1), (−6, 4), (−9, 4)
Obstacle 6 (−9,−4), (−6,−4), (−6,−1), (−9,−1)

Table 4.1: Coordinates of vertices of boundaries and obstacles in both environments used in
Experiment 1.

the influence of dynamic obstacles on the controller’s performance. That is, in an environment

with both static and dynamic obstacles, it may be difficult to determine to what degree either type

of obstacle influences the controller’s performance.

4.4.2 Simulated Environment

To evaluate the effectiveness of our algorithm, we conducted extensive experiments with a

simulated user walking in virtual reality. Simulation has become a popular method of evaluation

for redirection controllers since it allows researchers to quickly iterate on their algorithms and

run large-scale experiments in a variety of environments [11, 29, 54, 117, 132, 192, 205, 206,

207, 231]. Our simulated user is represented as a circle with radius 0.5m, and a reset is incurred

whenever they came within 0.2m of any obstacle in the PE. The user walked with a speed of

1m/s and turned with a speed of 90◦/s. Our simulation timestep size was 0.05.

In our simulation, the model for generating the paths of the user is slightly different for

static and dynamic scenes. For static scenes, we used the motion model that was introduced
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Experiment 2 (physical)
Boundary (−5,−5), (5,−5), (5, 5), (−5, 5)
Obstacle 1 (−4.5,−4.5), (−2.5,−4.5),

(−2.5,−2.5), (−4.5,−2.5)
Obstacle 2 (−2,−1), (2,−1), (2, 1), (−2, 1)
Obstacle 3 (−2, 4), (2, 4), (2, 5), (−2, 5)

Experiment 2 (virtual)
Boundary (10,−10), (10, 10), (−10, 10), (−10,−10)
Obstacle 1 (−4.5,−4.5), (−2.5,−4.5), (−3.5,−2.5)
Obstacle 2 (0, 2), (2, 1), (1,−2), (−1,−2), (−2, 1)
Obstacle 3 (−2, 4), (2, 4), (2, 5), (−2, 5)
Obstacle 4 (−8.5, 8.5), (−8.5, 2.5), (−6.5, 2.5),

(−7, 7), (−2.5, 6.5), (−2.5, 8.5)
Obstacle 5 (−8,−1), (−8,−2), (−7,−2), (−7,−1)
Obstacle 6 (−7,−3), (−7,−4), (−6,−4), (−6,−3)
Obstacle 7 (−9,−5), (−9,−7), (−8,−7), (−8,−5)
Obstacle 8 (−6,−9), (−3,−7), (−3,−6), (−7,−8)
Obstacle 9 (3,−4), (3,−8), (7,−8), (7,−4)

Obstacle 10 (5, 9), (4, 8), (8, 4), (8, 8)

Table 4.2: Coordinates of vertices of boundaries and obstacles in both environments used in
Experiment 2.

by Azmandian et al. [7] and has been used by others [207, 231]. For dynamic scenes, we

used ORCA [211] to generate trajectories for the user and the dynamic obstacles since ORCA

generates smooth, collision-free paths for multiple objects in the same environment.

4.4.3 Experiment Design

For each of the static environment experiments, we generated 100 paths using the path

model developed by Azmandian et al. [7]. The average path length in these experiments was

roughly 350m. We ran our simulation on these 100 paths once with each of the redirection

controllers we evaluated (our visibility-based controller, ARC [231], APF [205], and S2C [83]).

For each path, the user starts in a random location in the physical and virtual environments. The

user also has a random heading in both environments. It is important to clarify that these random
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Experiment 4 (physical)
Boundary (−5,−5), (5,−5), (5, 5), (−5, 5)
Obstacle 1 (−4.5,−4.5), (−2.5,−4.5),

(−2.5,−2.5), (−4.5,−2.5)
Obstacle 2 (−2,−1), (2,−1), (2, 1), (−2, 1)
Obstacle 3 (−2, 4), (2, 4), (2, 5), (−2, 5)

Experiment 4 (virtual)
Boundary (−11,−6), (6,−6), (6, 6), (−11, 6)

Table 4.3: Coordinates of vertices of boundaries and obstacles in both environments used in
Experiment 4.

starting configurations were different between the 100 paths but were the same each time we

simulated a particular path.

For the dynamic scene, we generated 100 collision-free paths for the user and the four

dynamic obstacles in the VE using the ORCA [211]. These paths had an average length of

136m. These paths were shorter than those used in static environments because we generated

the dynamic paths to take roughly the same amount of timesteps to complete as in the static

experiments, before considering time taken for resets. As we did in the static scenes, all redirection

controllers were evaluated on the same 100 paths that we generated with ORCA.

4.5 Results

We compared the number of resets across all 100 paths for the four algorithms that we tested

in our experiments. Some of our data violated assumptions of homoscedasticity or normality. To

account for these violated assumptions, we compared the controllers’ performance with a robust

one-way repeated measures ANOVA with 20% trimmed means. We used the WRS2 package

in R to conduct our analyses [128]. For all of the results presented in this section, we include

the test statistic (F ) and the significance level (p-value). We also include the results of the post-
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Number of Resets
Experiment 1 Experiment 2 Experiment 3 Experiment 4

Redirection Controller ψ̂ CI p ψ̂ CI p ψ̂ CI p ψ̂ CI p
Vis. Poly. vs ARC [231] -32.7 [28.9, 36.5] < .0001 -5.68 [-2.73, -8.64] < .0001 -24.8 [-20.6, -29.0] < .0001 -5.68 [-3.70, -7.67] < .0001
Vis. Poly. vs APF [205] -76.4 [-101, -51.7] < .0001 -105 [-117, -92.1] < .0001 -49.6 [-71.1, -28.0] < .0001 -64.3 [-82.7, -45.9] < .0001
Vis. Poly. vs S2C [83] -114 [-143, -85.1] < .0001 -342 [-362, -321] < .0001 -56.9 [-71.7, -42.1] < .0001 -183 [-203, -162] < .0001
ARC [231] vs APF [205] -42.3 [-66.6, -18.1] < .0001 -99.0 [-112, -86.4] < .0001 -25.2 [-46.8, -3.56] < .01 -59.1 [-77.4, -40.7] < .0001
ARC [231] vs S2C [83] -82.4 [-114, -51.3] < .0001 -335 [-356, -313] < .0001 -32.0 [-47.6, -16.3] < .0001 -177 [-197, -157] < .0001
APF [205] vs S2C [83] -35.2 [-71.3, 0.882] < .01 -233 [-254, -212] < .0001 -8.02 [-31.3, 15.2] = .350 -112 [-133, -91.5] < .0001

Table 4.4: The results of post-hoc pairwise comparisons of average number of resets for the
redirection algorithms tested in our experiments. The post-hoc tests are computed using linear
contrasts. The ψ̂ value is the average difference in means between the first algorithm and the
second algorithm listed in the “Redirection Conotrller” column. A negative ψ̂ value indicates
that the first algorithm has a lower average number of resets across all 100 paths. The CI column
presents the lower and upper bounds of the confidence interval, while the p column presents the
significance level of the difference between the algorithms. The ψ̂ and CI values are rounded to
three significant figures.

hoc comparisons in Table 4.4 and Table 4.5, which are computed using linear contrasts. For the

post-hoc tests, we report the difference between the means (ψ̂), the upper and lower confidence

intervals ([CI lower, CI upper]), and the significance level (p-value). Note that we use confidence

intervals as a measure of effect size [124]. The main focus of this work is to study the efficacy

of our visibility-based algorithm, so we do not include the results of the post-hoc tests for any

comparisons that do not include our visibility-based steering controller in the main text (e.g. ARC

compared to APF).

Resets per Meter Walked
Experiment 1 Experiment 2 Experiment 3 Experiment 4

Redirection Controller ψ̂ CI p ψ̂ CI p ψ̂ CI p ψ̂ CI p
Vis. Poly. vs ARC [231] -.0929 [-.0811, -.105] < .0001 -.0157 [-.00746, -.0239]< .0001 -.0688 [-.0570, -.0806]< .0001 -.0428 [-.0278, -.0577]< .0001
Vis. Poly. vs APF [205] -.220 [-.291, -.149] < .0001 -.299 [-.324, -.255] < .0001 -.137 [-.198, -.0767] < .0001 -.471 [-.598, -.345] < .0001
Vis. Poly. vs S2C [83] -.327 [-.411, -.242] < .0001 -.940 [-.995, -.885] < .0001 -.158 [-.200, -.116] < .0001 -1.34 [-1.47, -1.21] < .0001
ARC [231] vs APF [205] -.123 [-.195, -.0515] < .0001 -.274 [-.309, -.239] < .0001 -.0697 [.-131, -.00858] < .01 -.431 [-.556, -.306] < .0001
ARC [231] vs S2C [83] -.237 [-.325, -.149] < .0001 -.920 [-.975, -.864] < .0001 -.0886 [-.132, -.0456] < .0001 -1.30 [-1.43, -1.17] < .0001
APF [205] vs S2C [83] -.101 [-.207, .00495] < .05 -.642 [-.700, -.587] < .0001 -.0220 [-.0851, .0412] = .346 -.829 [-.975, -.683] < .0001

Table 4.5: The results of post-hoc pairwise comparisons of average distanced walked between
resets for the redirection algorithms tested in our experiments. The post-hoc tests are computed
using linear contrasts. The ψ̂ value is the average difference in means between the first algorithm
and the second algorithm listed in the “Redirection Conotrller” column. A negative ψ̂ value
indicates that the first algorithm has a lower average number of resets across all 100 paths. The
CI column presents the lower and upper bounds of the confidence interval, while the p column
presents the significance level of the difference between the algorithms. The ψ̂ and CI values are
rounded to three significant figures.
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4.5.1 Experiment 1

The robust ANOVA indicated a significant difference in the number of resets incurred when

exploring with the different redirection controllers F (1.88, 111.03) = 46.92, p < .0001. We

see in Figure 4.7 that our visibility-based algorithm achieves a median of 121 resets, which is

32 lower than the median of 153 achieved by ARC. The median number of resets achieved by

APF and S2C is slightly higher (188.5 and 217.5), and these two controllers have a much larger

variance in the number of resets across all 100 paths.

4.5.2 Experiment 2

Our results showed a significant difference in performance between the RDW controllers

F (1.66, 97.65) = 1266.94, p < .0001. Figure 4.8 shows us that the median number of resets

incurred by our algorithm is 87, that the median for ARC is 95, and that APF and S2C achieve

upwards of 150 median resets.

4.5.3 Experiment 3

There was a significant difference between the four steering algorithms in terms of the

number of resets incurred F (1.84, 108.75) = 29.90, p < .0001. In Figure 4.9 we see that this

significant difference favors our new algorithm. Similar to the pattern in first experiment, our

visibility-based redirection controller achieves a median of 147.15 resets, which is about 25 fewer

than that the 173 achieved by ARC, and APF and S2C have higher median resets (180 and 197)

with a larger variance, too.
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4.5.4 Experiment 4

In the dynamic scene, we found that the number of resets incurred was significantly different

between the four controllers F (2.04, 120.24) = 319.03, p < .0001. Once again, the significant

difference favors the new visibility-based algorithm we presented in this work (see Table 3.4).

Our algorithm had a median of 31 resets, while ARC had a median of 37 resets, APF had a

median of 90 resets, and S2C had a median of 213.5 resets.

4.6 Discussion

4.6.1 Static Scenes

Our first three experiments were conducted in static scenes. The results showed that our

novel algorithm based on visibility polygons resulted in significantly fewer resets with obstacles

in the environments we tested. Overall, the results in the static scenes supported our first hypothesis

(H1) that our visibility-based controller will outperform existing redirection controllers in static

scenes. In the first experiment, the physical and virtual environments had a considerable similarity

since both environments featured regularly spaced narrow corridors, though the VE was larger

than the physical one. The simulated user incurred more resets in this PE than in the one used

for Experiment 2. This is likely because the narrow corridors make it difficult for the user to

consistently walk without resets.

Experiment 3 used the PE from Experiment 1 and the virtual environment from Experiment

2. We chose this combination in order to study the steering algorithms’ performance in environment

pairs that have little similarity on a local scale. The PE is very regular and has only 90◦ turns.

However, the VE contains many differently-shaped obstacles, creating irregular turns and regions

of differing amounts of free space. We found that all redirection controllers except APF performed

101



worse in this experiment than they did in the others, which we believe is due to the more

significant mismatch between the physical and virtual environments. It suggests that controllers

based on alignment will experience more difficulty avoiding resets in environment pairs with low

local similarity than they will in pairs with high local similarity. Note that APF, which does not

steer the user with alignment, was able to perform better in Experiment 3 than in Experiment 1.

The result of Experiment 3 supports our third hypothesis (H3) that controllers that steer based on

alignment will perform better in environment pairs with high local similarity than in environment

pairs with low local similarity.

4.6.2 Dynamic Scenes

In addition to testing our controller in static scenes, we also evaluated its performance in

a scene with four dynamic virtual obstacles. We found that our steering algorithm based on

visibility polygons performed significantly better than ARC, APF, and S2C. This result supports

our second hypothesis (H2) that the additional information captured by the visibility polygon

will lead to fewer resets in dynamic scenes. One interesting result from the fourth experiment

is that overall, the number of resets was much lower than in any of the other experiments. This

is initially surprising since dynamic environments intuitively seem to be more challenging to

navigate. However, considering that the paths for this experiment were generated using ORCA

[211], this is less surprising. The paths in Experiments 1-3 consist only of straight-line segments,

while the paths in Experiment 4 include curved path segments. It may be the case that the curved

segments are more amenable to redirection, which may be the cause of the lower number of resets

seen in Experiment 4. Another possible explanation for the lower number of resets is the fact that

the user’s speed varied in Experiment 4 but was constant in Experiments 1-3. Finally, the paths
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in Experiment 4 were shorter than those in Experiments 1-3 since they were designed to take the

same amount of time as the paths in the static scenes, and the user sometimes stopped walking in

order to avoid collisions with the moving obstacles.

4.6.3 Other Considerations

In our algorithm, we used triangle area as our metric for measuring the similarity between

slices of the physical and virtual visibility polygons (subsubsection 4.3.3.3). Area is a relatively

crude similarity metric, since two polygons can have very different shapes but still have the

same area. Metrics that can more accurately capture how similar two triangles are may lead

to improvements in avoiding resets, since the improved metric will guide users towards free

space regions that are more similar. Shape similarity is a well-studied problem in the geometry

and vision communities, so we believe that it is very likely that there exists a better triangle

similarity metric. There is likely room for more sophisticated similarity metrics that go beyond

triangular slices. We compared visibility polygons using the triangular slices that divide the

polygons since it was a very natural way to segment the polygons, but it is possible that there

exist better decompositions for comparing visibility polygons.

4.7 Conclusion, Limitations, and Future Work

In this work, we presented a novel formulation of the redirected walking problem and

developed a visibility-based redirection controller that takes advantage of this formulation to

yield fewer resets during walking. Our formal description of the redirection problem frames it

in terms of optimizing the redirection gains such that the user follows a collision-free path in

the physical free space while simultaneously traveling on a collision-free path in the virtual free

space. We hope that this new formulation will allow researchers to further improve redirection
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controllers by leveraging motion planning techniques that have been well-studied by the robotics

community.

The novel redirection controller that we also presented in this work is based on the key

insight that the visibility polygon provides a reliable representation of the user’s free space at

their location. By dividing the physical and virtual visibility polygons into “slices” and steering

the user towards a physical slice that is similar to the current virtual slice, we were able to avoid

significantly more resets than the state-of-the-art controllers were able to. As evidenced by our

simulation-based results, our algorithm proved to be more effective in both static and dynamic

scenes where the physical and virtual environments had locally dissimilar layouts.

Although our results were positive, it is important to discuss the limitations of this work,

too. In our experiments, we only evaluated the algorithms in simulated environments. Simulation

can be effective for quickly getting an understanding of a RDW algorithm’s strengths and weaknesses,

but full user studies should be conducted to gain a more complete evaluation of a controller’s

efficacy and to highlight shortcomings that may not arise in simulations. Another limitation of

this work is that we only tested scenarios involving one user in the PE and VE. Many use-cases for

VR involve multiple users, either in the same PE or different PEs. Thus, it is important to continue

developing RDW controllers that can improve the locomotion experience for multiple users

[8, 11, 54]. Finally, it is important to consider the challenges involved in extending our algorithm

to commodity VR hardware and uncontrolled, irregular physical and virtual environments. Our

algorithm requires knowledge of the locations of obstacles around the user in the PE and VE.

Obtaining this data for the VE is generally not problematic, since the virtual environment data

is already being used for rendering purposes. However, collecting layout data of the PE is

considerably more difficult, since this involves object detection and tracking in real time. This
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problem can be sidestepped by providing the RDW controller with a map of the PE if it is known

beforehand, but this cannot be guaranteed in a commodity VR setting where the application

will be used in a variety of PEs. In addition to collecting environment data, it is important to

consider the run-time of the algorithm. Visibility computations are very well-studied problems

in computer graphics and robotics, so a considerable amount of effort has been invested into

developing efficient and robust algorithms for computing visibility. Nevertheless, since many

other computations need to be done on each timestep in VR applications, computing visibility

polygons in real-time may be difficult if the environment contains a large number of obstacles.

Future work should investigate different ways to use the visibility polygon for more sophisticated

steering, such as more accurate measures of shape similarity. Our results showed that for some

environments, the performance improvement afforded by visibility polygons was not large (though

it was statistically significant). It may be the case that our algorithm does not use visibility

polygons to their full potential. There is not a lot of research studying the relationship between

the shape of the virtual path and a controller’s performance, so the impact of the path models on

a controller’s performance is an open question that warrants more research. Another interesting

area for future work is to extend our visibility-based controller to real-world scenarios where

the exact geometry of the environments is not known. Our experiments were conducted using

reliable simulations to show that our algorithm is effective, but calculating visibility polygons in

real PEs will likely introduce new challenges. Finally, extensive in-person user studies should be

conducted now that we know that our visibility-based controller can yield significant benefits.
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Figure 4.7: Boxplot of the number of resets for each algorithm, across all 100 paths in Experiment
1. Our visibility-based algorithm significantly outperformed each of the other redirection
controllers.
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Figure 4.8: Boxplot of the number of resets for each algorithm, across all 100 paths in Experiment
2. The difference in the number of resets incurred is much larger for APF and S2C, which do
not take advantage of alignment. ARC and our visibility-based controller (Vis. Poly.) have more
similar performance levels, but our algorithm still produced significantly fewer resets.
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Figure 4.9: Boxplot of the number of resets for each algorithm, across all 100 paths in Experiment
3. Our controller based on visibility polygons performed significantly better than all other
controllers.
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Figure 4.10: Boxplot of the number of resets for each algorithm, across all 100 paths in
Experiment 4. In the dynamic scene we tested, we once again found that our visibility-based
algorithm was significantly better than the other controllers at avoiding resets with physical
obstacles.
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Chapter 5: Distractor-Based Redirection

Figure 5.1: A visualization of our distractor-driven locomotion interface designed to enable
exploration of large virtual environments using natural walking. In the virtual environment, the
user approaches a distractor (a frog) in an attempt to collect it using a virtual, hand-tracked
jar. Our algorithm detects this interaction and updates the behavior of the distractor in order to
guide the user away from the nearby boundary of the physical space (yellow tape in the physical
environment). In particular, our algorithm causes the frog to jump away to one of many candidate
positions (dashed red arrows) in the virtual environment that corresponds to safe positions in the
physical environment. The use of such distractors causes the user to alter their virtual trajectory
such that it is more compatible with their physical surroundings, which allows the user to explore
virtual worlds with with longer collisions-free trajectories even when they are located in a small
physical environment.

In this chapter, we present a method for modifying the behavior of virtual content that

the user interacts with as part of their virtual experience such that the user alters their virtual

trajectory to yield fewer collisions with unseen obstacles in their physical surroundings. To

achieve this, our method uses two main components: a safe zone computation module and a

distractor behavior computation module. When an interaction with a virtual object (a distractor)

is detected, our system first computes a location in the physical environment (PE) that the user

can be safely guided towards and then modifies the behavior of the distractor such that it guides
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the user towards the chosen safe location in the PE. To make our method effective in small PEs

(∼25m2), we take advantage of persistent distractors, elements of the VE that the user is likely

to continually interact with over the course of their experience, to encourage the user to walk on

collision-free trajectories for the duration of the virtual experience. To evaluate the viability of

our method, we conducted three experiments that studied how often users had to be interrupted

to avoid physical collisions with and without our method, and studied how different tunable

parameters of our method affect the distractors’ performance. Results showed that, compared to a

traditional redirected walking method for natural walking in VR, our method allowed participants

to travel uninterrupted for longer distances (7.864m vs 6.269m, 25% increase). Furthermore,

qualitative results showed that participants preferred our distractor-driven interface and that many

participants did not realize that their trajectory was being influenced by the distractors’ behavior.

5.1 Introduction

The ability to freely explore virtual environments (VEs) in virtual reality (VR) is important

for improving a person’s understanding of their virtual surroundings [37, 52, 188]. Furthermore,

exploration of VEs using natural locomotion provides benefits to the user’s sense of presence

in the environment [209] and to their performance on tasks in the VE [84, 162]. However,

achieving natural walking in VR is difficult because the user’s desired path through the VE might

correspond to a path in the physical environment (PE) that yields a collision with an obstacle or

exits the tracked space boundaries. Many different locomotion interfaces have been developed to

overcome this problem (e.g., route-planning navigation [22], teleportation [23], omnidirectional

treadmills [110], walking-in-place metaphors [120]), and each comes with its own advantages

and disadvantages [52]. In this work, we focus on locomotion interfaces that enable natural
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walking as a means of virtual exploration due to its benefits to spatial awareness, low learning

curve, and low cost of entry [209].

Natural exploration of VEs is especially challenging since the PE is usually significantly

smaller than the VE. The greater this size difference, the more likely it is that a valid path that the

user wants to travel on in the VE will correspond to an invalid physical path that yields a collision

with a physical obstacle [233]. The two main approaches that enable natural walking and mitigate

this simultaneous navigation problem are manipulated virtual architecture [56, 57, 194, 196, 197,

215] and redirected walking (RDW) [140, 157, 158]. With manipulated virtual architecture, the

layout of the VE is modified [57, 194, 215] or the virtual geometry is warped [56, 197] to fit

within the user’s physical space. A downside of this approach is that it cannot be applied to

applications where the precise layout of the VE is a hard constraint that cannot be manipulated

(e.g., a virtual real estate tour). With RDW, subtle rotations and translations are injected into

the user’s virtual movements, which causes the user to subconsciously walk on a physical path

that has a different shape than its virtual counterpart. One downside of RDW is that the benefit

it provides scales with the size of the PE—RDW requires a large amount of space (and time)

in order to significantly alter the user’s physical trajectory such that they can be reliably steered

away from obstacles [7, 132]. Considering that most people’s living spaces, where they are likely

to want to use VR, are quite small (20− 28m2 [61]), the utility of RDW is limited in the kinds of

situations where a VR locomotion interface is most needed.

Main Results: In this work, we focus on enabling natural walking to explore large VEs

when the user is located in a small PE, which we consider to have an area of approximately

20−28m2 [61]. We develop a new natural walking locomotion interface that leverages persistent

distractors—elements of the virtual environment that the user continually interacts with over the
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course of their virtual experience. Our interface consists of two main components, a “safe zone

computation” module and a “distractor behavior modification” module. When an interaction

between the user and a persistent distractor is initiated, our method computes the regions of the

physical space that the user can be guided towards without colliding with any unseen physical

obstacles, which we label as “safe zones.” After a safe zone has been chosen, the next step is to

compute and execute a behavior for the persistent distractor that will influence the user to alter

their virtual trajectory such that they are guided towards the chosen safe zone. In this manner, we

are able to guide the user along virtual trajectories that decrease the chance of a physical collision.

Our method is general enough to be applicable to any physical and virtual environment as long as

the physical safe zones can be computed and an appropriate distractor behavior can be executed

to guide the user to a safe zone. To evaluate our interface, we conducted three experiments and

compared against a common benchmark for generalized redirected walking (steer-to-center [84])

paired with randomized distractor behavior. Quantitative results of our study indicated that when

steered using our distractor-based algorithm, users were able to walk on average 1.6m further

(∼ 20.3% increase) before being forced to stop and reorient due to an imminent collision in

the PE. Qualitative results indicated that participants found the distractor-driven algorithm to be

engaging and that they were unaware that they were being explicitly guided around the PE. In

summary, our main contributions are:

• A new VR locomotion algorithm that is based on continually integrating the virtual content

into the path-planning system in the form of distractors. Unlike RDW, our algorithm causes

users to overtly change their virtual trajectory such that it is less likely to yield a physical

collision. We achieve this by computing candidate safe regions of the physical space and
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modifying the behavior of persistent distractors that the user engages with to guide them

along collision-free trajectories. By overtly changing the virtual trajectory, it is easier to

avoid physical obstacles in small physical environments where there is insufficient space

for RDW to be effective.

• Three user studies that compare the effectiveness of our algorithm against a classic redirection

algorithm (steer-to-center) with unoptimized distractor behavior. Results of our studies

show that distractor-guided navigation allows users to travel an average of 1.6m further

(∼25.8% increase) before incurring a collision with an obstacle, and that it can yield more

immersive and comfortable experiences for users.

5.2 Background & Related Work

5.2.1 Natural Walking in Virtual Reality

Many different locomotion interfaces have been developed to enable users to explore virtual

environments (VEs) that are much larger than their surrounding physical environment (PE) [52,

188]. Common locomotion interfaces for VR include teleportation [23], walk-in-place [120],

flying [209], and step-driven locomotion. Each interface comes with different advantages and

disadvantages in terms of their learning curve, the level of presence they afford, and their efficiency.

In this work, we focus on locomotion interfaces that allow users to explore VEs using natural,

everyday walking since prior work has shown that these walking-based interfaces have a low

learning curve and tend to improve users’ sense of presence, memory, and task performance in

VR [84, 162, 209].

Redirected walking (RDW) is a popular walking-based interface that works by imperceptibly

rotating or translating the VE around the virtual camera while the user explores [158]. By
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injecting these rotations and translations slowly enough, users do not consciously perceive them

but still adjust their physical trajectory in order to counteract the VE movements and remain

on their intended path in the VE. Researchers have studied how easily users can perceive the

VE motions under different conditions [92, 139, 187, 230] and have developed a myriad of

algorithms that apply RDW to steer users away from physical obstacles in both single-user

[9, 42, 113, 158, 192, 198, 205, 231, 232, 243] and multi-user scenarios [11, 54]. Recent work

by Azmandian et al. [9] showed how to design a “meta-strategy” that switches between different

RDW algorithms at runtime to reduce the number of resets incurred. One potential downside

of RDW is that it creates a mismatch between the user’s physical and virtual trajectories, which

may make it difficult for users to interact with physical objects that are aligned with their virtual

counterparts. To mitigate this downside, researchers have investigated the viability of using

redirection for collision avoidance and physical-virtual alignment [206, 207, 231, 232].

Aside from slowly rotating and manipulating the VE, researchers have also directly edited

the geometry of the VE to alter the user’s physical path. Sun et al. [197] and Dong et al.

[55, 56] compute mappings from the VE to the PE to ensure that all paths in the VE are navigable

from within the given PE. Other geometry-based solutions include altering the structure of the

VE while the user is not looking at particular regions [194, 214, 215], creating impossible

environments with overlapping rooms [39], and procedurally generating the virtual environment

according to the user’s physical surroundings [35, 57, 166, 173, 182, 238]. Recent reviews of

RDW were published by Nilsson et al. [140] and Li et al. [122].
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5.2.2 Distractors in Virtual Reality

It is often the case that the virtual environment contains many dynamic elements and objects

of interest that capture and occupy the user’s attention (e.g. narrative elements of a video game).

In the context of RDW, these elements are known as distractors [146]. Diegetic distractors are

those attention-grabbing elements that make sense to exist within the surrounding context of the

virtual experience (e.g. cars in a virtual city), while nondiegetic distractors are not plausible

within the context of the experience (e.g. a floating arrow that guides users).

Peck et al. studied the effects of distractors when participants were about to walk out of the

boundaries of the VR tracking space and found that they significantly improved the reorientation

experience for users [147, 148, 149]. Similarly, Rewkowski et al. [159] showed that audio-based

distractors can be an effective method for reorienting users in VR. Chen et al. [32] and Sra et

al. [183] demonstrated how distractors can be integrated into the virtual content in a diegetic

manner to make the reorientation events less jarring. Cools et al. [44] studied how different

levels of interactivity with distractors can yield different benefits for the locomotion experience.

Finally, Williams et al. showed that the user’s sensitivity to RDW changes in the presence of

distractors [230] and showed that haptics can be used to improve the effectiveness of distractors

for redirected walking [234].

In this work, we build upon the distractors literature by incorporating distractors into the

VR locomotion interface in a way that can be applied to any virtual experience, as long as certain

constraints are fulfilled. Our work differs from the existing literature on distractors in that we

focus on how to use distractors throughout the duration of the virtual experience, as opposed to

invoking them only once the user reaches a physical obstacle or boundary. That is, we introduce
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the notion of persistent distractors that exist in the VE as a core element of the experience and

can be interacted with even when the user does not need to be reoriented away from obstacles.

The work that is most similar to our current work is the haptic distractor by Williams et al. [234]

since the distractor (a virtual dog on a leash) was always present in their work, but it only provided

distracting stimuli if the user approached the boundaries of the tracked space.

5.3 Persistent Distractor-driven Locomotion

At a high level, our method operates by first detecting when the user interacts with a virtual

object that can be used as a distractor, computing the safe region of the PE that the user should be

guided towards to minimize the chance of collision, and then modifying the distractor’s behavior

to influence the user to change their virtual trajectory to move towards the safe physical region.

In this section, we provide implementation details on our method. For each component of the

system, we first explain the implementation in generalized terms that can be applied to any

virtual experience and physical environment, then we provide details on how the component

was implemented into our VR application that was used in our user study. An overview of our

framework is shown in Figure 5.2.

To evaluate our method (Section 5.4), we implemented a VR game in which users were

tasked with catching virtual frogs (Figure 5.1). In our application, the user was placed into a

20m× 20m VE with trees, bushes, and stones scattered about the environment. The VE was also

populated with frogs that jumped from one bush to another; these frogs served as the primary

distractors whose behavior we modified to influence the user’s trajectory. The user held a virtual

jar in one hand (which was tracked using a VR controller) and could catch frogs by moving the

jar close enough to a frog. To improve the realism of the experience, the bushes in the VE also
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Input
• Physical configuration
• Virtual configuration
• Physical environment
• Virtual environment

Persistent Distractor-driven Locomotion

Safe Zone Computation
• Compute navigable 

regions of physical space.
• Select goal configuration 

in this space.

Update Distractor Behavior
• Compute path to 

configuration.
• Update distractor to 

follow this path.

Output
• Updated physical configuration
• Updated virtual configuration
• Updated physical environment
• Updated virtual environment

Yes

No

Distractor 
interaction 
detected?

Figure 5.2: An overview of our persistent distractor-driven locomotion interface. Given as
input the layouts of the physical and virtual environments and user’s configuration in each
environment, our system listens for an interaction between the user and a persistent distractor
in the virtual environment. If an interaction is detected, the system computes the regions of the
physical environment that the user can be safely guided towards (Subsection 5.3.3). Once a goal
configuration to guide the user towards has been chosen, our system computes a path from the
user’s current physical configuration to the goal physical configuration and modifies the behavior
of the distractor such that it guides the user along this computed path (Subsection 5.3.4).

made a rustling sound and animation at random intervals and when a frog entered or exited a

bush. If the user reached the boundaries of the tracked space, a reset intervention was employed

to maintain their safety and reorient them back towards the interior of the tracked space [229].

5.3.1 Definitions & Terminology

In VR, the user is located in a PE and a VE at the same time, with a particular position and

orientation in each environment. We denote an environment as E, and the user’s position and

orientation as their configuration q = {p, θ}, where p ∈ R2 is their position and θ ∈ [0, 2π)

is their orientation in E. A user’s trajectory in an environment is defined as an ordered set of

configurations Q = {qt}T−1
t=0 , where Q consists of T timesteps. We differentiate between the

PE and VE using a subscript (e.g. q3phys is the user’s configuration at timestep t = 3 in the

physical environment Ephys). An environment is defined as a closed polygon P = {v1, v2, ..., vn}

where consecutive vertices are connected with an edge. Vertices are represented by an x- and

y-coordinate. Obstacles in E are represented as holes in P , which are also represented as ordered

sets of vertices connected by edges. The set of physical configurations that yield a collision with
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a physical obstacle is the obstacle space Cobs, and the set of configurations that do not yield any

collisions is the free space Cfree, whereEphys = Cfree∪Cobs. If the user gets too close to a physical

obstacle (either an object or the boundaries of the tracked space), the locomotion interface must

initiate a reset maneuver that reorients the user away from the nearby obstacle. The goal of a

locomotion interface is to minimize the number of times the user undergoes a reset.

5.3.2 Distractor Interaction Detection

In order for a given VR application to be able to track interactions with distractors, the

main requirement is that the application has a notion of what elements in the VE can serve as

distractors, and that it can detect when the user begins to interact with one such element. In

practice, such a feature is common since VR is an interactive technology and needs to track the

user’s interaction with the VE in order to have the virtual elements respond to the user’s actions

accordingly in order to maintain presence and plausibility illusions [176, 177].

User Study Implementation: In our application, a distractor interaction was triggered

any time the user moved the virtual jar within 0.45m of the frog. If a distractor interaction was

detected, the frog had a 90% chance to flee and jump towards a different bush in the VE. The 10%

chance was chosen to allow users to catch some frogs so that they do not get too discouraged or

frustrated due to repeated failed attempts.

5.3.3 Safe Zone Computation

Once an interaction between the user and a persistent distractor is triggered, our method

computes the nearby regions of the PE that the user can be guided towards. These regions, which

we call “safe zones,” should be reachable without incurring a physical collision and, ideally,

should not lead to a collision shortly after the user has reached it (e.g., being located in a corner
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is likely to lead to a collision in the near future). In order to compute a safe zone in any arbitrary

environment, the system requires some representation (a map) of the PE Ephys. From this map,

we wish to compute the safe zones S which is a set of configurations in the PE that can be reached

without incurring a collision:

S = {q∗phys | ∃ Q∗
phys ∈ Cfree}, (5.3.3.1)

whereQ∗
phys = {qtphys, ..., q∗phys} is a physical trajectory starting at the user’s current configuration

qtphys and ending at a goal configuration q∗phys that the user can reach without any collision.

The difficulty in computing S will vary depending on the amount of information the system

has about the PE. In the best case, the VR system has a global map of the user’s entire physical

space, in which case S = Cfree and the user can be guided towards any navigable location in

the PE using a distractor. In practice, most VR systems do not have access to a full map of

the user’s physical surroundings due to the limited range and noisy output of trackers. In this

case, S will be the set of physical configurations that the system can sense and can validate

to be navigable to at the current time step. For example, the visibility polygon defined at the

user’s location in the PE provides a well-defined set of configurations that are guaranteed to be

reachable by definition [232]. In the RDW community, researchers have developed heuristics

using techniques like artificial potential fields [11, 132, 205] and deep learning [30, 117, 192]

to (explicitly or implicitly) compute safe regions of the PE that the user can be steered towards.

However, in those RDW approaches, the computed safe zone is defined by the mechanics of the

RDW algorithm (e.g., the potential function or the training data); in our formulation, the safe zone

is simply any space in the PE that the user can reach without a collision and it does not depend on

the mechanics of the collision-avoidance module (in our case, persistent distractors). This notion
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Figure 5.3: A visualization of the safe zone concept. The navigable space Cfree is shown in green,
and the regions that yield a collision Cobs are shown in black. In this figure, the user (white cursor
icon) is heading towards a physical obstacle and should be guided towards a safe region of the
physical space. An example point q∗phys in the safe zone S is shown in the top left corner of the
environment. A valid path that leads the user towards q∗phys is shown in blue, and an invalid path is
shown in red. Left: When the VR system has access to a full map of the user’s PE, the safe zone
S is equal to the entire free space Cfree. Right: When the VR system does not have a full map of
the user’s PE, the safe zone S can be a partial representation of the user’s physical surroundings
(subset of Cfree), such as the visibility polygon centered at their current position. Portions of the
environment that are not known to the system are shown as black dashed lines.

of safe region computation is a well-studied problem in robotics that relates to control barrier

functions [3] and simultaneous localization and mapping (SLAM) [25, 200]. An illustration of

the safe zone concept is shown in Figure 5.3.

User Study Implementation: In our implementation, the physical space was a 4.3m ×

6.125m room with no obstacles inside it. Since we had access to a full map of the PE in our

implementation, the safe zone computation module was treated as a pre-processing step and S

was not computed at run time. Our PE was a simple convex shape, so the center of the PE is

generally the safest region for the user to be, since it is the point that is on average furthest from

all of the PE boundaries. However, one problem with guiding the user towards the center of a
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convex environment, as is done in the steer-to-center (S2C) RDW algorithm [84, 157], is that as

soon as the user reaches the center point, their next steps take them directly away from this safe

zone (the center of the PE) and towards a boundary [157]. To resolve this issue, Razzaque et

al. proposed the steer-to-orbit (S2O) and steer-to-multiple-targets (S2MT) methods that instead

directs the user along a circular path or along a series of pre-determined waypoints, respectively

[157]. Our distractor-driven locomotion is directly inspired by the S2O and S2MT algorithms

when computing safe zones to steer the user towards. When a frog flees from a user, the safe

zone is computed as one of four pre-determined points near the borders of the PE. These points

are located along the major and minor axes of the PE, 75% of the way along the vector originating

from the center of the PE and pointing in each of the cardinal directions (see Figure 5.4). If the

user was located closer to the east or west points and a distractor interaction was triggered, the

next safe zone was chosen randomly between the north and south points or vice versa. Thus, the

frog jumped to a bush in the VE that was closest in proximity to the chosen safe zone in the PE

(details in Subsection 5.3.4).

5.3.4 Update Distractor Behavior

Once a safe zone has been computed, the next step in our method is to modify the persistent

distractor’s behavior such that it influences the user to change their virtual trajectory to move

towards the safe zone. In order to do this, a pathQ∗
phys from the user’s current physical configuration

qtphys to the goal configuration q∗phys must be computed. Since the walkable physical space Cfree

is a topological space, this path can be formulated as the function f : [0, 1] → S such that

f(0) = qtphys and f(1) = q∗phys. Intuitively, this function is simply the trajectory that the user

must travel on, starting at qtphys and ending at q∗phys, in order to continue their interaction with
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the distractor and avoid a physical collision. Computing this path can be formulated as a motion

planning problem and there exist many different algorithms for computing such a path [115].

Once f has been computed, the system must modify the behavior of the distractor such that the

user will walk along f as they continue to interact with the persistent distractor. In practice, this

usually means changing the trajectory of the distractor to move closer to a configuration q∗virt

that is closely aligned with q∗phys, at which point the user will follow the distractor and reach the

safe zone. Note that in general, it cannot be guaranteed that the q∗phys corresponds to a reachable

section of the VE. If the user cannot reach the safe zone without breaking the plausibility or

presence illusion in VR, an alternate safe zone should be computed to guide the user towards.

This concept is illustrated in Figure 5.5.

User Study Implementation: Once a safe zone has been computed, our system directs

the frog being interacted with to jump towards the bush in the VE that is closest in proximity

to the chosen safe zone, i.e., the frog jumped in a straight-line trajectory to a new configuration

q∗virt that corresponds most closely to q∗phys. In this manner, the user is encouraged to walk on a

straight path that guides them close to q∗phys.

5.3.5 Trade-offs Between Collision Avoidance & Immersion

So far, our system has been presented under the assumption that the only purpose of

distractors is to help the user avoid collisions. In practice, however, this is not the case. Since VR

is an immersive experience and maintaining a sense of presence is important for delivering an

effective virtual experience, a distractor-driven locomotion interface should ideally be designed

so as to avoid creating breaks in presence (BiPs) for the user. This can be achieved in part by using

context-aware distractors, as opposed to out-of-place distractors that are not congruent with the
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virtual surroundings [147]. However, the feasibility of safely guiding the user also depends on the

goal configuration q∗phys and trajectory chosen (Subsection 5.3.4). Consider, for example, a guided

virtual house tour. If our system computes an optimal goal configuration q∗phys that corresponds to

a region of the virtual house that has already been visited, it may be difficult to justify guiding the

user back to a location they have already visited (since there is likely nothing new to see there).

Worse still, if q∗phys corresponds to an invalid location in the VE (e.g. inside of a virtual object),

there may be no realistic options for redirecting the user to q∗phys. Thus, when computing q∗phys

and the path f , it is important to consider not only the likelihood of avoiding collisions, but also

the user’s level of presence during the distractor-guided navigation. Estimating the user’s level of

presence beforehand can be difficult, so we recommend conducting pilot studies to evaluate users’

level of presence (e.g. via the Slater-Usoh-Steed presence questionnaire [210]) and adjusting the

implementation accordingly.

5.4 Experiments & Results

To measure the efficacy of our method, we used average virtual distance walked between

resets as the main performance metric. We used this metric because it is a path length-normalized

measure for the number of resets a user incurs. If our distractor-driven interface is effective

at reducing the frequency of resets, we expect a larger distance walked between resets. We

also collected qualitative data in the form of observations during experimentation and informal

interviews with participants, and we discuss that data in Section 5.5.

5.4.1 Experiment 1: Comparison with RDW

When being directed by our implementation of the distractor-driven framework, users

walked an average of 7.864m (σ = 2.085) between resets. When directed by the randomized
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distractor behavior, users only walked an average of 6.269m (σ = 1.657) between resets. Results

of a dependent samples t-test indicated that this difference was statistically significant (t(15) =

2.439, p = 0.0276, r = 0.533). This result indicates that our framework can be used to create a

locomotion experience yields improved collision-avoidance performance over an implementation

with purely random distractor behavior paired with RDW. This result supports our hypothesis for

Experiment 1.

5.4.2 Experiment 2: Impact of Collision-avoidance Bias

When users were directed using our collision-aware distractors, but with only a 30% chance

for distractors to behavior optimally, users walked an average of 6.881m (σ = 1.710) between

resets. When directed with RDW and random distractor behavior, users walked an average of

6.289m (σ = 1.541) between resets. Results of a dependent samples t-test indicated that this

difference was not statistically significant (t(15) = 1.243, p = 0.233, r = 0.306). By increasing

the likelihood that the distractors follow a naı̈ve behavior (jumping to a random bush instead of

to a bush near q∗phys), users spent more time chasing frogs to locations outside of the PE, which

caused them to incur a similar number of resets to the purely random behavior condition. This

result highlights the importance of having distractors execute behaviors that guide users towards

physical safe zones to avoid collisions. This result supports our hypothesis for Experiment 2.

5.4.3 Experiment 3: Impact of Distractor Behavior Feasibility

When users were directed by our collision-aware distractors (with a 90% chance to follow

collision-aware behavior, as in Experiment 1) but the VE constrained the distractors’ ability to

guide the user towards q∗phys, users travelled an average of 5.940m (σ = 1.353) between resets.

In the same constrained VE, with randomized distractor behavior, users walked a similar average
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distance of 5.383m (σ = 0.682) between resets. Results of a dependent samples t-test indicated

that this difference was not statistically significant (t(15) = 1.428, p = 0.174, r = 0.346). This

result highlights the importance of designing a VE that allows the distractors to execute diegetic

behaviors that can still guide the user towards q∗phys. This result supports our hypothesis for

Experiment 3.

5.5 Discussion

Although Experiment 1 showed that our implementation can be an effective method for

guiding the user along collision-free trajectories, it is important to consider how the different

components of our framework affect the final locomotion experience. In particular, how the

distractor behaves (Subsection 5.3.4) and the reachability of safe zones (Subsection 5.3.3) have a

significant impact on collision avoidance. In Experiment 2, we modified how likely the frogs were

to follow a collision-aware strategy or not. The results of this experiment showed the importance

of having distractor behaviors that guide the user towards safe zones often enough; without

collision-aware distractors, the user’s exploration of and interaction with the virtual environment

is continuously interrupted by resets. In Experiment 3, we evaluated how important it was for

the distractors to be able to guide the user towards a virtual configuration that was aligned with

the chosen safe physical configuration q∗phys. By decreasing the density of bushes and adding

obstacles in the VE, the frogs that the user chased were less likely to be able to reach a location

that aligned well with q∗phys. Results of this experiment showed that, on average, inability to

effectively guide the user towards q∗phys had a notable impact on the locomotion experience, such

that the number of resets the user incurred was the same with and without our collision-aware

distractor guidance (indicated by the lack of significant differences in Experiment 3).
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To better understand how the distractor behavior impacted users’ trajectories, we show

example trajectories in Figure 5.5. In Figure 5.5, we show how the different parameters of

the distractor behavior (Experiments 1-3) influence the user’s trajectory in the PE and VE. In

particular, we see that participants were able to visit roughly the same amount of different

locations in the VE, but that the user incurred significantly fewer resets when the distractors

behaved in an ideal manner (Experiment 1). Interestingly, the user did not spend much of their

time in one location of the VE chasing the same frog back and forth between safe zones. However,

in Experiment 3, participants spent most of their time walking long distances in the VE to reach

the next bush that a frog had jumped to.

During experimentation, we also collected qualitative data in the form of observations made

by the researcher running the experiment and comments made by participants during or after the

experiment. In general, participants’ main strategy was to scan the VE in place to find a frog,

and then walk towards that frog to catch it. If users could not find any frogs, they started to

walking to explore the VE in search of frogs. Participants had different catching strategies as

they approached the frogs: some participants tried crouching down and approaching very slowly,

some participants always approached the frogs from behind in an attempt to remain out of the

frog’s field of view, and other participants tried slowly approaching and then quickly thrusting

the virtual jar at the frogs.

Participants had mostly positive feedback about the experiment, noting that they found it

fun and often did not notice any redirection. When the behavior of the frogs was explained to

them after completing the experiment, most participants commented that they did not realize

they were being redirected by the frog behavior, which adds further support for the strength of

distractors for collision avoidance. One participant reported that the collision-aware distractors

127



steering felt “way better” and that he hardly noticed the reset screen in the collision-aware

distractor condition. After completing the experiment, another participant commented that he

remembered thinking he had been “walking for a really long time” without incurring any resets

while searching for frogs. Participants also reported trying to change their strategy after repeatedly

failing to catch any frogs, which supports the notion that our distractors were effective at occupying

their attention and suggests that changing the distractor behavior can strongly influence users’

behavior. Interestingly, some participants assumed that if a bush rustled, it meant that a frog was

hiding in that bush (which was not necessarily true). Once they realized that a bush rustle does not

always signify the presence of a frog, they eventually stopped paying attention to these rustles

(not all participants made this realization). This highlights the importance of considering all

distractors in a VE, since it is clear that even auxiliary elements of the VE that are not core to the

virtual task can capture the user’s attention and influence their behavior. Furthermore, it suggests

that some distractors are more “powerful” than others when it comes to collision avoidance, since

only some participants were influenced by the bush rustling, and only some of these influenced

users eventually started ignoring the rustling distraction. Finally, some participants expressed

frustration due to the low chance of successfully catching frogs. Users also sometimes became

discouraged from chasing the frogs if they jumped too far away, since they did not want to walk

a long distance only to fail again. Overall, the qualitative data provide support for the notion

that a distractor-driven locomotion interface can be effective for helping the user avoid collisions

without interfering with their virtual experience and supporting natural walking as a locomotion

method.
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5.5.1 Additional Implementation Examples

To help other researchers understand how our distractor-driven interface can be applied to

applications other than our frog-catching game, this section provides high-level descriptions of

other VR applications and how our framework can be integrated into them.

Virtual Guided House Tour: In a virtual guided tour application, the user may wish to

explore a virtual house that they are considering purchasing. In such an application, a virtual

human companion would serve as a tour guide and would take the user to different rooms in the

house. The persistent distractor would be the tour guide, and they could provide distraction cues

in the form of instructions (“Please follow me so that I can show you the kitchen.”) and walking

in a direction that avoid collisions in the physical space.

Search and Rescue Training: In a search and rescue training application, the user could be

learning how to carry out search and rescue tasks as part of a natural disaster response team. The

user could be paired with a virtual dog companion that takes them to areas of interest in the VE

(e.g., towards a person buried under rubble who calls out in need of assistance) that correspond

with safe regions of the PE.

Hide and Seek Game: In a hide and seek game, the user can be assigned either a “hide”

role or a “seek” role. When the user plays as the seeker, the persistent distractors would be virtual

agents that the user must search for and capture (similar to the frogs used in our application).

However, if the user plays as a hider, the distractor would be the seeker. As the seeker approaches

closer and closer to the user in the VE, they would be encouraged to move to a new virtual location

that is further away from the seeker. In such a situation, the distractor would actually serve as

a deterrent that the user wants to avoid, instead of serving as something that the user wants to
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chase in order to engage with it in close proximity.

5.6 Conclusion, Limitations, and Future Work

In this work, we presented a framework that allowed users to explore large VEs, while

located in a small PE, using natural walking. Our framework is centered around the observation

that VR experiences are interactive and that we can influence the user to alter their intended

virtual trajectory such that it is less likely to yield a collision in the physical space. To do this,

we control the behavior of persistent distractors, which we define as elements of the VE that the

user continually interacts with throughout the course of their virtual experience. In particular,

when our system identifies that the user has started an interaction with a distractor, we identify

a safe location in the PE that the user can be guided towards and then modify the distractor’s

behavior to move to a virtual configuration that is aligned with the identified safe location in the

PE. In practice, the user changes their trajectory in the VE to follow the distractor to its new

virtual location, which also guides the user towards to safe physical location and away from

collisions with physical obstacles. To verify the effectiveness of our framework, we conducted

three experiments using a frog-catching game that implements our proposed framework. Results

of our experiments showed that our approach is effective for reducing the frequency with which

users get too close to physical obstacles and demonstrated that continuous engagement with

context-aware distractors is a powerful tool for collision avoidance.

Despite these benefits, our work has some limitations. First, our distractor-based algorithm

relies on being able to accurately compute the safe regions of the physical surroundings in order to

know where the user should be guided. Developing such an algorithm that works across a variety

of physical environments and on different VR hardware is difficult due to limitations in real
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time sensing, reconstruction, and simultaneous localization and mapping [200]. Additionally, the

exact implementation of distractors will depend greatly on the virtual experience and the user’s

particular configuration in the PE and VE, which can make it difficult to understand exactly how

reliable our approach is for collision avoidance in a variety of different experiences and user

configurations. Finally, the ratio between male and female participants in our experiment was not

balanced, which may have created some bias in our results [150, 167].

Future work in this area should study to what degree distractor-driven locomotion can be

implemented using not just visual but also aural, haptic, and cognitive distractors.Additionally,

extensive studies on the impacts of the different components of our framework on collision-

avoidance should also be studied, similar to the experiments we conducted in the present study.

Additionally, more advanced methods for computing safe zones and user behavior modelling and

prediction will lead to significant improvements.
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Figure 5.4: The physical and virtual environments used in our implementation. The physical
environment (top) was a 4.3m × 6.125m space. The green dots represent the four pre-computed
safe zones that users were guided towards by the persistent distractor (frogs). The first virtual
environment (bottom left), used in Experiments 1 and 2, was a 20m × 20m environment with
bushes, trees, and other miscellaneous forest objects. The second virtual environment (bottom
right), used in Experiment 3, was a 20m × 20m environment with significantly fewer bushes and
large rocks and a plateau that obstructed the movements of our persistent distractors.
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(a) Configurations of the PE and VE that allow the distractor to guide the user towards q∗phys. The
path that takes the user to q∗phys is represented by the function f (black dashed arrow). The blue
dashed arrow in the VE represents a path through the VE that the distractor could travel on in order
to guide the user towards q∗phys. Since there are no virtual objects that obstruct the distractor’s path,
the distractor can simply follow the trajectory f to reach q∗virt.

(b) Configurations of the PE and VE that do not allow the distractor to guide the user towards
q∗phys. The virtual configuration q∗virt that corresponds with the physical goal configuration q∗phys
lies inside of a virtual object. Thus, any path from the distractor to q∗virt is invalid because it would
create an unrealistic experience that would break the user’s sense of presence in the VE (clipping
through a virtual object).

Figure 5.5: A diagram illustrating how the distractor behavior can be used to guide the user
towards the desired goal configuration q∗phys. When the user gets too close to a physical obstacle
and needs to be guided back to a safe location in the PE, our algorithm updates the behavior of a
nearby persistent distractor in the VE to naturally guide the user towards the virtual configuration
q∗virt that corresponds with q∗phys.
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Figure 5.6: Left: Box plot of the average distance walked between resets for each participant,
grouped by the experiment condition. Results show that, compared to randomized distractor
behavior, participants walked significantly further (7.864m vs 6.269m) before incurring a reset
when they navigated through the VE using our collision-aware persistent distractors (∗ p < 0.05).
Right: A histogram of the distances of paths travelled between resets, grouped by experiment
condition. Paths that were influenced by a collision-aware distractor were on average longer than
those traveled when interacting with random distractors and RDW.
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Figure 5.7: Left: A box plot of the average distance walked between resets for each participant,
grouped by the experiment condition. In Experiment 2, the likelihood that distractors followed
a collision-aware trajectory was reduced, to show the impact of this parameter on the user’s
locomotion experience. Compared to random distractor behavior, participants traveled, on
average, similar distances while being guided with our collision-aware distractors. The lack
of significant differences highlights the importance of generating distractor behaviors that try to
guide the user towards safe zones. Right: A histogram of the distances of paths travelled between
resets, with and without our collision-aware distractor behavior. Unlike Experiment 1, the two
distributions have more overlap, indicating that users walked roughly equal distances between
resets regardless of the distractor behavior.
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Figure 5.8: Left: A box plot showing the average distance walked between resets for each
condition in Experiment 3. In Experiment 3, the VE was modified so that it was harder for
distractors to execute diegetic behaviors that could guide the user towards the safe zone. We
see that participants travelled a similar distance regardless of the presence of collision-aware or
naiv̈e distractors. This lack of significant differences highlights the importance of having a virtual
experience in which the persistent distractors can reliably guide the user towards a virtual location
that corresponds closely to the physical safe zone. Right: Histogram of the distances of paths
walked between resets. Similar to Experiment 2, we see a high amount of overlap between the
two distributions, which highlights that the users’ locomotion patterns were similar despite the
use of collision-aware distractors in one of the conditions.
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Figure 5.9: Plots of an example path that a participant travelled for each experiment. In each
plot, the user is being guided using our distractor-driven interface. Green circles represent bushes
in the VE that frogs jumped to, red X’s represent positions where the user incurred a reset, teal
stars represent positions where the user caught a frog, and black shapes represent obstacles. The
boundary of the PE is the dashed black rectangle (6.125m×4.3m), and the boundary of the VE is
the solid black square (20m×20m). The user’s physical and virtual trajectories are shown in blue
and orange, respectively. Left: When frogs had a 90% chance to flee and 90% chance to choose a
destination using our method (as in Experiment 1), the user spends some of their time following
the frog around a small area of the VE, then chases the frog to another location in the VE if it
randomly jumps to a far-away location, or searching for new frogs after catching one. Middle:
When the frogs had a 90% chance to flee and only a 30% chance to choose a destination using our
method (as in Experiment 2), the user incurred more resets than in Experiment 1. Right: When
the frogs had a 90% chance to flee and a 90% chance to choose a destination using our method
but it was harder for the distractor to reach a location that aligned closely to the goal physical
configuration q∗phys, the user incurred a similar number of resets as in Experiment 2 and was not
able to catch any frogs.
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Chapter 6: Quantifying Environment Navigability for Natural Walking in Virtual
Reality

Figure 6.1: A visualization of our Environment Navigation Incompatibility (ENI) scores
for physical environment paired with three different virtual environments with increasing
environment area. Our metric is used to accurately quantify whether it is possible to compute a
good mapping between the geometric layouts of these environment. We sample points across the
virtual environment to represent the user’s position (shown as colored circles) and compute the
corresponding point in the physical environment based on comparing the local neighborhoods.
Overall, our metric helps us to determine which regions or subsets of the VE are more compatible
with the PE. Through this visualization, we can see which regions of the VE are more or less
compatible with the PE.

In this chapter, we present a novel metric to analyze the similarity between the physical

environment and the virtual environment for natural walking in virtual reality. Our approach is

general and can be applied to any pair of physical and virtual environments. We use geometric

techniques based on conforming constrained Delaunay triangulations and visibility polygons to

compute the Environment Navigation Incompatibility (ENI) metric that can be used to measure

the complexity of performing simultaneous navigation. We demonstrate applications of ENI for

highlighting regions of incompatibility for a pair of environments, guiding the design of the
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virtual environments to make them more compatible with a fixed physical environment, and

evaluating the performance of different redirected walking controllers. We validate the ENI

metric using simulations and two user studies. Results of our simulations and user studies show

that in the environment pair that our metric identified as more navigable, users were able to walk

for longer before colliding with objects in the physical environment. Overall, ENI is the first

general metric that can automatically identify regions of high and low compatibility in physical

and virtual environments.

6.1 Introduction

Locomotion, the ability to explore a space, is a fundamental task in virtual reality (VR).

Locomotion interfaces are techniques that enable a user to explore a virtual environment (VE).

The main goal of locomotion interfaces is to allow users to comfortably and safely explore the

VE, which may be very large and dynamic, while they are located in a small physical environment

(PE). While many locomotion interfaces have been developed [52], interfaces that allow users

to explore VEs using natural walking are often preferred since they afford a higher sense of

presence [209] and tend to lead to better performance at tasks in VR applications [84, 162].

Although natural walking interfaces have many benefits, not all virtual tasks and pairings of

physical and virtual environments are best suited for a natural walking interface [52, 193]. If the

PE is prohibitively small or has a high number of obstacles, the user may have a more comfortable

virtual experience with a locomotion interface that does not involve natural walking (such as

teleportation or joystick movement).

A key issue with respect to locomotion interfaces that use natural walking is to determine

whether a particular pair of physical and virtual environments (denoted ⟨PE, VE⟩) is amenable
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to collision-free locomotion. It is well-known in the environmental psychology community that

the layout (i.e., the geometric structure) of an environment influences the shapes of the paths that

a users travel [69, 175, 228]. Indeed, similar studies have shown that the user’s perception of a

virtual environment’s complexity and navigation also depends on its layout [47, 65]. Although

we have some understanding of the effects of environment layout on navigation in either PE

or VR, a key issue with such locomotion interfaces is simultaneous exploration of a physical

and virtual environment. Some prior work has studied the effects of environment layout on the

feasibility of collision-free navigation with natural walking in the context of redirected walking

[158]. However, such studies are limited due to ambiguity in terms of how they define the layout

of the environments, or lack of simultaneous consideration of the layouts of the PE and VE

relative to each other.

Main Results: We address the problem of understanding the influence of environment

layouts on the VR locomotion experience based on natural walking. Our goal is to accurately

quantify to what degree the layouts of a given PE and VE influence a user’s ability to avoid

collisions during locomotion. We introduce an Environment Navigation Incompatibility (ENI)

metric, which quantifies the difficulty of performing collision-free VR navigation in a given

⟨PE, VE⟩ pair. ENI works by uniformly sampling locations across the PE and VE, and computing

the most compatible physical location for each sampled location in the VE. This compatibility

computation is based on the visibility polygon [49], which characterizes the local structure of

an environment around a location. We formulate ENI on the visibility polygon due its ability to

characterize environment layout, and to capture local features of an environment, which are also

used by humans to navigate through environments. The final output of ENI is an n-dimensional

vector of real numbers, where n is the number of sampled locations in the VE. We compute the
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mean and standard deviation of this n-dimensional vector and automatically create interactive

visualizations to summarize the output of ENI and make it more interpretable. Using ENI, we can

better understand how different regions of the VE and PE contribute to collision-free navigation.

ENI highlights regions of low and high compatibility between the PE and VE without requiring

us to collect any locomotion data in the environment pair. To summarize, our main contributions

are:

• A novel metric that quantifies the ease of collision-free navigation for a given pair of

physical and virtual environments. ENI is based only on the geometric layout of the

environments, making it computable for any static ⟨PE, VE⟩ pair, assuming the layouts of

the environments are known. ENI is the first general VR navigability metric that simultaneously

considers the layouts of the PE and VE relative to each other.

• We highlight multiple benefits of ENI, including analyses of how changes in the VE influence

navigability, guidelines on how to design VEs to be more amenable to navigation for a fixed

PE, and evaluation of the performance of RDW controllers.

• Evaluation of ENI using extensive simulations and two user studies. We validate that ENI is

capable of identifying ⟨PE, VE⟩ pairs that are amenable to collision-free navigation without

the need for any locomotion data.

6.2 Background and Prior Work

6.2.1 Navigability Metrics

In this work, we define the navigability of an environment as the average distance an

agent can walk before colliding with an obstacle, in all directions across all positions in the
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environment. Extending this to VR, where the user is simultaneously located in a PE and VE, the

navigability of a ⟨PE, VE⟩ pair is the average distance the user can walk before colliding with

a physical obstacle, in all directions across all positions in both environments. Our goal is to

develop a metric that can quantify this notion of navigability for a ⟨PE, VE⟩ pair. Navigability in

VR depends on many factors, including the layouts of the environments, the user’s path through

the VE, and the user’s cognitive load during locomotion. While all of these features are important

to consider when assessing navigability, in this work we only study the effect of the environments’

layouts. In particular, we use the term “navigability” to refer to the difficulty of collision-free

navigation; it is also common for researchers to use the term “complexity” to refer to the same

idea.

Quantifying navigability has been studied in related fields, including robot navigation and

environmental psychology. The factors that contribute the most to navigability depend on the

domain in which navigability is being evaluated. Thus, when discussing navigability metrics, it

is important to consider the context in which the metric is being developed, since this context will

influence which features a metric emphasizes.

6.2.1.1 Environmental Psychology

Researchers in environmental psychology have developed metrics to better understand how

humans perceive the navigability of indoor spaces. Wiener et al. [228] characterized environment

complexity using geometric properties of isovists (also known as visibility polygons), which

are the 2D planar region of space in an environment that can be seen from a given location.

They found a correlation between participants’ perception of the complexity of the environments

and some properties of isovists in these environments, such as isovist jaggedness and area.
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Stamps [185] explored the relationship between isovist properties and humans’ perception of

enclosure or permeability of urban environments. Stamps [184] also conducted a meta-analysis

that found correlations between perceptions of enclosure of the environment and properties of

a human’s location, such as horizontal distance to the nearest obstacle. To better understand

the relationship between human navigation and layouts for the entire environment (as opposed

to only local features that are captured with isovists), researchers have proposed space syntax

measures [79, 80]. Haq et al. [75] and Peponis [151] showed relationships between the global

structure of environments and humans’ navigation behavior through them. Our approach is

motivated by these prior methods and our metric is designed to quantify environment structure

both on a local and global scale using isovists (visibility polygons) and random sampling, respectively.

6.2.1.2 Locomotion in Virtual Environments

One of the most popular locomotion interface that enables real walking is redirected walking

(RDW) [158]. Thus, in this section we focus mainly on prior work studying real walking in VR

using RDW. There is some work on understanding how the shape of an environment influences

the efficacy of the RDW steering algorithm. Azmandian et al. [7] studied the effect of the size

and shape of the tracking space on the number of times that users have to orient away from

physical obstacles. Messinger et al. [132] studied the effect of the size of the tracking space

and shape on the number of resets during RDW. They considered square PEs of varying sizes

in addition to PEs with different shapes including rectangular, trapezoidal, cross- and L-shaped.

Their results showed that users were able to avoid more collisions as the PE size grew. Moreover,

non-convex PEs like the cross and L-shaped rooms lead to more collisions than the convex PEs.

Lee et al. [119] also studied how RDW algorithms perform as the shape and size of the PE
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changes. In their work, they considered square PEs of varied sizes, as well as PEs in the shape

of a square, trapezoid, cross, circle, T, and L, each with a roughly equal area. Lee et al. [119]

observed that larger PEs lead to fewer collisions and that non-convex PE shapes like cross, T, and

L lead to more collisions than the convex PEs. Williams et al. [231] introduced the Complexity

Ratio (CR) metric to quantify the navigability of a ⟨PE, VE⟩ pair. CR is defined as the ratio

of the average distance to the nearest object in the PE and VE, averaged across many sampled

points. They showed that as the environments become more complex, users incur more resets.

Our Environment Navigation Incompatibility metric is more general than the methods described

in this section, and provides a more accurate indication of the navigability of a given ⟨PE, VE⟩

pair.

6.2.2 Shape Similarity

There is considerable work on shape analysis of objects and environments in geometric

computing. The more similar a PE and VE are in terms of geometric shape, the more likely it is

that a collision-free path in the VE corresponds to a collision-free path in the PE. Therefore, any

measure on the the similarity of a PE and VE provides a proxy to measuring the likelihood that a

user can travel on collision-free paths in that ⟨PE, VE⟩ pair.

Many metrics have been proposed for shape similarity. The Hausdorff distance pairs points

from one shape to points on the other shape, and the distance measure is the longest distance

between a pair of points [91]. Another popular method for comparing polygons is the turning

function, which parameterizes a polygon by the lengths of its edges and the interior angles

between adjacent edges, which simplifies the problem to the comparison of 1D functions [5].

Symmetric difference is a similarity measure that takes into account the area of overlap of
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the two polygons. For two polygons A and B, the symmetric difference metric is defined as

area((A − B) ∪ (B − A)) [218]. In our approach, we also use the metric area(A − B) to

measure the similarity of two visibility polygons that represent the user’s position and orientation

in an environment.

Shape similarity for 3D objects and environments has also been extensively studied [17,

28]. Osada et al. [142] introduced the notion of a shape function, which is a function that

characterizes the shape of an object when it is computed over a sufficiently dense set of random

points on the object’s surface. Using such a function, Osada et al. computed histograms of

shape functions for different objects and reduced the 3D shape similarity problem to comparing

histograms. Our approach is also motivated by such techniques and we define appropriate shape

functions to characterize the structure of an environment. Moreover, we compare pairs of physical

and virtual shape function values to measure the similarity of the PE and VE layouts. Shape

correspondence is a problem that is closely related to shape similarity. In the correspondence

problem, we wish to compute a mapping of features (such as points on a surface) of one object

to features on the other object [213]. When computing corresponding features, the mapping

is usually defined according to geometric properties, and the mapping can be constrained in

different ways, such as being a one-to-one or one-to-many mapping. In our approach, we take

inspiration from shape correspondence literature by finding the corresponding location in one

environment that has the best “local similarity” to a given location from the other environment.

Analogous to the geometric shape similarity problem, the robot motion planning community

has developed metrics to quantify the layouts of environments with respect to collision-free

navigation. Anderson et al. [4] proposed a metric that is a combination of the entropy and

compressibility of the environment. Similar to entropy, Crandall [45] used the branching factor
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and environment clutter as a measure of complexity for maze environments. Shell et al. [169]

borrowed concepts from space syntax [79, 80] to define complexity in terms of the distance

between adjacent convex regions of the environment. El-Hussieny et al. [59] focused on robots

that explore unknown environments, and proposed an environment complexity metric that measures

the difference between the expected and actual number of locations the robot needs to visit in

order to map out the entire environment.

6.3 Environment Navigation Incompatibility Metric

Our goal is to formulate a metric that quantifies a user’s ability to navigate with collision-

free paths in a given ⟨PE, VE⟩ pair. Since our driving application is VR locomotion with RDW,

our metric is designed such that it accounts for the factors that are important for RDW. Currently,

we only take into account the geometric layouts of the PE and VE. In VR locomotion, the user’s

ability to walk on collision-free paths depends primarily on their proximity to obstacles in both

environments, which is defined by their relative position and orientation. If the layouts of the

PE and VE are similar, the user’s proximity to the obstacles would exhibit similar characteristics

and thereby make it easier to navigate without collisions. We consider a ⟨PE, VE⟩ pair to be

compatible for RDW when they have a high degree of similarity. In this section, we detail the

steps involved in formulating our ENI metric and analyze them.

6.3.1 Environment Representation

Since our metric is based only on the layouts of the PE and VE, our goal is to use a general

representation of environment geometry. While environments typically consist of 3D objects, we

only consider the 2D projections of the environment onto the plane. To prevent an environment

from being infinitely large, we represent an environment as a closed polygon P , and obstacles
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in the environment as holes of P . We use many standard geometric concepts to represent the

environment geometry and a user’s position and orientation in an environment. Throughout this

chapter, a subscript of phys or virt on the symbols below is used to clarify if the symbol belongs

to the physical or virtual environment, respectively.

• P: A closed polygon, specified as an ordered set of vertices {v1, v2, ..., vm}, where consecutive

vertices are connected with an edge. If P has holes, they are specified using simple

polygons, which are also represented as ordered sets of vertices connected by edges.

• E: An environment, specified as a closed polygon, potentially with holes representing

obstacles in the environment.

• p: A location in an environment, specified as a vector in R2.

• θ: A user’s orientation in an environment, in the range [0, 2π).

• q: A user’s configuration (or state) in an environment. Their configuration consists of a

position p and an orientation θ.

• Cobs: The set of all states that correspond to the user as having collided with an obstacle in

E (also known as the obstacle space).

• Cfree: The set of all states that correspond to the user not collided with an obstacle in E

(also known as the free space). This set corresponds with the set of points in E that are not

inside any holes (obstacles) of E. This represents the regions of E that the user can walk

in.

• Freephys, F reevirt: The free space in the physical or virtual environment, respectively.
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6.3.2 User Position and Orientation

Since visual perception plays a large role in driving a person’s locomotion experience [145],

our goal is to define a metric using a geometric representation that is congruent with what

users see during navigation in an environment. As such, we use the visibility polygon as a

representation of the local surroundings that a user sees at a single time instance during navigation.

For a given point p in the plane, the visibility polygon P is the set of all points in the plane that

are visible from p. The point from which the visibility polygon is computed is also known as

the kernel, k. For an environment E and any point p ∈ Cfree, we know that P ⊂ Cfree by the

definitions of P and Cfree. For an environment with a set of obstacles O, we have a set S of line

segments that denotes the boundaries of all obstacles in the environment. The visibility polygon

can be computed in O(s log s) time [199], where s = |S|, which makes it a fairly efficient

representation of the user’s local surroundings.

While the visibility polygon allows us to represent the user’s surroundings at a single

moment during locomotion, a single visibility polygon does not account for the different positions

and orientations a user could have across an entire path. An environment has many different

positions at which the user can be located, and the local surroundings could be different for every

unique position. In the following subsections, we explain how we extend the notion of visibility

polygons to account for the many different positions and orientations a user can have during

locomotion, thus providing a way to summarize the entire environment using local features which

are most prominent during locomotion (i.e. visibility polygons).
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6.3.2.1 Positions

In order to represent the user’s position relative to local obstacles and account for the many

different possible positions the user can be located at, we uniformly sample points in Cfree and

compute a visibility polygon at each sampled point. For an environment represented by a polygon

P (potentially with holes), Cfree is represented as the set of points in P that are not in any holes

of P .

First, we compute a conforming constrained Delaunay triangulation [170] of Cfree with

the constraint that each triangle has a maximum area, which is a free parameter that can be

adjusted.1 Once the triangulation is computed, we choose the sampled points as the set vertices

of the triangulation that lie in the free space (see Figure 6.2). We denote this set of sampled

points as P = {p|p ∈ Cfree and p ∈ CDT}, where CDT is the conforming constrained Delaunay

triangulation of E. Let n be the number of points in P . For each point p ∈ P , we compute a

visibility polygon at p (that is, the kernel k of the visibility polygon is p). The final output of our

uniform sampling is a set of n visibility polygons P = {P1,P2, ...,Pn}. In this manner, P is an

approximation of all the different local surroundings that the user can have in E along any given

path.

We use a conforming constrained Delaunay triangulation to sample Cfree since it tends

to produce fairly uniformly-sized triangulations, which means the points we sample from the

triangulation tend to be evenly spaced. Other sampling methods like random sampling or importance

sampling can be used, but care must be taken to ensure that the sampling scheme yields points that

are evenly spread across the environment without producing too many points, since this would

slow down the metric computation process (see Subsection 6.3.5). In this work, we make no
1The implementation used is available here: rufat.be/triangle

149

https://rufat.be/triangle/


Figure 6.2: Left: An environment with obstacles (black) and the constrained Delaunay
triangulation (green) of the free space. Right: The vertices (green) of the constrained Delaunay
triangulation that lie inside the free space. These vertices are the sampled points at which we
compute visibility polygons to describe the structure of the environment and compute our ENI
metric.

assumptions about which regions of Cfree the user may be located in, so a uniform sampling is

best suited for our metric computation.

6.3.2.2 Orientations

While the visibility polygons in P represent the different local surroundings the user can

perceive as they change their position in E, these polygons do not account for the fact that the

user’s perception of their surroundings will also depend on their orientation in the environment.

To account for the user’s orientation at a position in E, we rotate the visibility polygon around

its kernel (since the kernel also corresponds to the user’s position inE). For a visibility polygon P

with kernel k and vertices {v1, v2, ..., vm}, we define the visibility polygon rotated counterclockwise
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by θ radians as:

Pθ =



cos θ − sin θ

sin θ cos θ


v.x− k.x

v.y − k.y


+

k.x
k.y


∣∣∣∣∣∣∣∣ v ∈ P

 (6.3.2.1)

Here, v.x and v.y represent the x- and y-coordinates of the vertex v, respectively. Thus, Pθ has

the same shape as that of P , with the only difference being the orientation of this polygon in the

plane.

6.3.3 Measuring Compatibility of Local Surroundings

The more similar the physical and virtual visibility polygons are, the more likely it is that

the user is able to walk on collision-free paths in the local neighborhood of the current location

(see Figure 6.3). Thus, to measure the compatibility of a user’s physical and virtual surroundings,

we need a way to measure the similarity of two visibility polygons. This provides a way to assess

the navigability of a user’s configuration in the PE and VE.

As mentioned in Subsection 6.2.2, there are many different ways to measure the similarity

of shapes. In this work, we are mainly concerned with the user’s proximity to obstacles. Since the

visibility polygon already encodes the proximity to obstacles in all directions, our notion of shape

similarity depends on the sizes of the polygons. Thus, to measure the similarity (compatibility)

of two visibility polygons, we measure the amount of overlapping area between the polygons.

Given a physical position pphys ∈ Freephys and a virtual position pvirt ∈ Freevirt, let Pphys

and Pvirt be the visibility polygons with kernels kphys = pphys and kvirt = pvirt, respectively. We

define the similarity of Pphys and Pvirt as the area of Pvirt that is “inaccessible” from Pphys. That

is, if the user is standing at kphys and kvirt, our similarity metric for two visibility polygons is the

total area of Pvirt that cannot be reached due to occlusion by an edge of the boundary of Pphys
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Figure 6.3: An illustration of the impact of the similarity between the user’s physical and virtual
surroundings on their ability to travel on collision-free paths. In the top row, the user (shown as
the white cursor) cannot walk forward in the VE without colliding with an object in the PE. In the
bottom row, the user’s proximity to obstacles in the two environments is more similar, so more
of the possible paths in the VE correspond to collision-free paths in the PE. In our metric, we
compute this area of the virtual surroundings that cannot be accessed from a particular physical
surrounding as a measure of the navigability at a pair of physical and virtual configurations.

(see Figure 6.3). Formally, the similarity of visibility polygons P1 and P2 is computed using the

Boolean difference operation [49]:

ϕ (P1,P2) = area (P1 \ P2) . (6.3.3.1)

Here, the area(x) function returns the total area of the set of polygons x. Note that P1 and P2

must be translated such that their kernels lie at the same coordinates in the plane (i.e. P1 and P2

must be “overlayed” ontop of each other). A visualization of this similarity metric is shown in
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Figure 6.4. If ϕ(P1,P2) = 0, this implies that P1 is entirely contained inside P2, and that the user

can reach all regions of P1 without colliding with any obstacles represented by the edges of P2.

The larger ϕ(P1,P2) is, the more dissimilar P1 and P2 are, which increases the amount of space

in P1 that is inaccessible when the user is standing at k2 ∈ P2. Note that ϕ is not symmetric, so

ϕ(P1,P2) ̸= ϕ(P2,P1). In our formulation, we only compute ϕ(Pvirt,Pphys), since our primary

concern is regions of the VE that are inaccessible due to constraints imposed by the PE.

It should be noted that area is only one measure of the similarity of Pphys and Pvirt. It

is also possible to use other properties of P as the basis of our comparison, such as the average

distance between the boundary of P and k, or the length of the shortest line connecting two points

on the boundary of P that also passes through k. In our benchmarks, we observed that area was

an overall better metric because it provides a holistic summary of the differences between P1 and

P2, while other metrics tended to ignore regions of either polygon.

6.3.4 ENI Metric

In this section, we describe how various components described above are used to compute

our Environment Navigation Incompatibility (ENI) metric. Our goal is to estimate, for any

possible virtual state qvirt ∈ Freevirt, which physical state qphys ∈ Freephys is most compatible

with qvirt. If we can compute this for all states in Freevirt, we will have a measure that tells us

how easy, in the ideal case, it will be for a user to navigate on a collision-free path in the given

⟨PE, VE⟩ pair. Our metric requires as input the 2D layouts of a physical environment Ephys and

a virtual environment Evirt (Subsection 6.3.1). Given the layouts of Ephys and Evirt, we sample

points uniformly across each environment using the technique detailed in subsubsection 6.3.2.1,

with a maximum area constraint of 0.1m. For each sampled point p ∈ E, we compute the
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associated visibility polygon with kernel p.

This yields two sets of visibility polygons, Pphys and Pvirt, which are an approximation of

all the possible states that the user can have in Ephys or Evirt. For each state qvirt ∈ Freevirt (i.e.

each visibility polygon Pvirt ∈ Pvirt), we wish to find the physical state qphys ∈ Freephys that

is most similar to qvirt. To do this, we compare each Pphys ∈ Pphys to each Pvirt ∈ Pvirt using

the similarity metric in Equation 6.3.3.1. However, it is not enough to compute ϕ(Pvirt,Pphys)

with the polygons Pphys and Pvirt. The polygons computed from our uniform sampling represent

the different positions the user can have, but they do not account for the user’s orientation. To

measure the similarity of Pphys and Pvirt while also accounting for the different orientations the

user can have, we aim to solve the following optimization problem:

Φ∗ (Pvirt,Pphys) = min
θ∈[0,2π)

ϕ
(
Pvirt,Pθ

phys

)
. (6.3.4.1)

That is, we want to find the θ ∈ [0, 2π) that minimizes the value of ϕ(Pvirt,Pθ
phys) (i.e. maximizes

the similarity between Pvirt and Pphys). In practice, we found that computing Φ∗ (Pvirt,Pphys) for

every pair of visibility polygons in {Pvirt×Pphys} was too expensive. To lower the computation

time, we limit Φ∗ to optimize ϕ in the domain Θ∆ = {θ1, θ2, ...θ10}, where θ1 = 0◦ and θ

increases in increments of 36◦. Thus, for a pair of physical and virtual visibility polygons Pphys

and Pvirt, we approximate the maximum similarity of the polygons as:

Φ (Pvirt,Pphys) = min
θ∈Θ∆

ϕ
(
Pvirt,Pθ

phys

)
. (6.3.4.2)

Now we have everything necessary to approximate the optimal qphys for a given qvirt. Using

visibility polygons to represent qphys and qvirt, we compute the qphys that is most compatible with
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qvirt as:

P∗
phys = argmin

Pphys∈Pphys

Φ (Pvirt,Pphys) . (6.3.4.3)

To compute the ENI metric, we compute the compatibility score between each virtual

visibility polygon and its most compatible physical visibility polygon, yielding a vector of real

numbers representing the best-case compatibility for each sampled state in Freevirt. Formally,

this is defined as:

x =

{
Φ

(
Pvirt, argmin

Pphys∈Pphys

Φ (Pvirt,Pphys)

)∣∣∣∣∣Pvirt ∈ Pvirt

}
, (6.3.4.4)

where x is an n-dimensional vector and n = |Pvirt|. This vector x is the final output of the ENI

metric. Since n can be in the thousands, we summarize the output of ENI using the mean and

standard deviation of the vector, which we denote as [µ, σ]. Note that this summary does not

perfectly characterize the ENI measure, since two distinct measures can have the same mean and

standard deviation. Details on how to accurately interpret x are discussed in Subsection 6.4.1.

6.3.5 ENI Metric: Analysis

In this section, we discuss the properties of our Environment Navigation Incompatibility

metric. These properties help ensure that ENI avoids ambiguity and accurately models the

important features of the VR locomotion problem during computation.

Sensitivity to input: Assuming the point sampling parameters are fixed (i.e. for a fixed

input, computing the sampled points multiple times yields the same set of points each time), the

output of the ENI metric is always the same. This is because our metric performs an exhaustive

search of all pairs of physical and virtual states {Pphys ×Pvirt} when computing the compatibility

of the PE and VE. As a result of this property, we avoid ambiguity that can arise from using
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environment properties that do not completely characterize the layout of the environment (e.g.

environment area). Note that since we compute a triangulation of each environment, small

perturbations in the input geometry will result in different triangulations (and sampled points),

which will yield slightly different metric measurements.

Coupled computation: The ENI metric requires a ⟨PE, VE⟩ pair as input in order to be

computable. This is because the metric is designed to compute the compatibility of the two

environments. ENI was intentionally designed in this way since it is the differences between the

PE and VE that make collision-free navigation difficult. This property ensures that our metric

appropriately considers the layouts of the PE and VE relative to each other, which makes ENI a

more faithful measure of navigability in VR.

Sampling density: The ENI metric has one free parameter, which is the maximum area

of triangles in the constrained Delaunay triangulation of Cfree that is used to uniformly sample

points in E (subsubsection 6.3.2.1). The smaller this parameter is, the denser the sampling of

points in E. A denser sampling yields a more more accurate measure for the ENI metric, but

also increases the size of the output x and the computation time. In our implementation, we set

the maximum area such that each environment has roughly 500 samples (i.e., the maximum area

parameter depends on the area of Cfree).

To validate that 500 samples was sufficient, we computed the ENI measure for a ⟨PE, VE⟩

pair with varying amounts of sample density, and compared the changes in the mean and standard

deviation of the ENI measures. The results are shown in Table 6.1. From these results, we can see

that increasing the number of points more than tenfold does not yield a noticeable change in the

µ or σ of the ENI metric, suggesting that our 500 samples points is sufficiently high resolution.

Furthermore, increasing the sample density leads to prohibitively high computation times for
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relatively little increase in metric accuracy, since the runtime complexity of the ENI metric is

O(nm), where n = |Pvirt| and m = |Pphys|.

Sampled points ENI µ ENI σ Computation time (s)

257 486.9 92.3 168
517 486.7 93.4 347
1050 482.3 98.5 664
2129 482.3 100.0 1277
4337 481.8 100.1 2593

Table 6.1: Effect of sample density on the accuracy of the ENI metric, using the ⟨PE #1, VE #1⟩
environment pair. After increasing the density of our point sampling by roughly 16×, the mean
and standard deviation of the ENI metric exhibited very little change in values, but suffered a
significantly greater computation time.

6.4 Applications and Benefits of ENI

6.4.1 Analyzing Areas with Low and High Compatibility

Since the output of ENI is an n-dimensional vector of real numbers, it is difficult to directly

interpret the ENI measure. To aid in interpretation, we visualize the ENI measure using an

interactive visualization which can be seen in Figure 6.5. Our visualization includes a map

of the PE and VE, and a histogram of the individual compatibility scores computed for each

pair of physical and virtual visibility polygons (see Subsection 6.3.4). Each circle drawn in

Evirt represents the kernel of a virtual visibility polygon. A circle’s color is determined by the

compatibility score Φ computed from Equation 6.3.4.2 using the visibility polygon centered at

that circle’s location. By taking a dense, uniform sampling of points and coloring them according

to their compatibility scores, our visualization provides an easy way to see which regions of the

VE lead to the most incompatibility with respect to the given PE.

To further improve the interpretability of the ENI metric, our visualization also includes

interactive tools that allow researchers to explore the metric output. With a lasso tool (Figure 6.6),
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users can select points in Evirt which will also highlight the corresponding most compatible

points in Ephys that were computed from Equation 6.3.4.3. This helps researchers to understand,

for a selected group of configurations in the VE, which configurations in the PE will be most

amenable to collision-free navigation. Additionally, hovering over any bar in the histogram will

highlight the physical and virtual points that contributed to the selected histogram bar. Using this

interactive visualization, researchers can explore the compatibility of a pair of environments on

both a broad and a specific level, which makes it easier to design improved RDW controllers and

more compatible ⟨PE, VE⟩ pairs.

6.4.2 Analysis of Changes in VE on Compatibility

The ENI metric helps us to understand how different changes to the VE can effect the ease

of collision-free navigation in the given PE. We assume that the PE is fixed, since this is usually

true in practice. To demonstrate how ENI can be used to understand the effects of VE changes

on navigability, we show the results of two examples. First, we look at the effects of changing

the density of objects in the VE on navigability, and second we look at the effects of changing

the size of the VE on navigability.

6.4.2.1 Changes in Virtual Object Density

For this example, we consider the PE and VEs shown in Figure 6.7. The PE is designed

to represent a room that could be found in a home, such as a living room. The VEs are chosen

to have the same hexagonal boundary shape with an area of 900m2, but with varying amounts of

random polygonal objects. The first environment has four objects, the second has eight objects,

and the third environment has sixteen objects. Objects that are present in one VE are still present

in the VEs with higher object density, to make comparisons between conditions easier.
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Results of the ENI metric measurements for each of the ⟨PE, VE⟩ pairs are shown in

Figure 6.7. As the VE is populated with more obstacles, the average and maximum ENI scores

decrease, indicating that the more cluttered VEs are more compatible with the given PE for

navigation. Intuitively, this makes sense since the amount of space in the VE that is visible

(and thus, immediately navigable) goes down as the object density increases. As the area of

immediately navigable space in the VE decreases, it approaches the area of immediately navigable

space in the much smaller PE. Results from the validation of the ENI metric (see Subsection 6.5.1)

confirm that navigability increases as the density of objects in the VE increases. From this

example, we can see that introducing obstacles into an environment can actually make it easier

for users to avoid collisions in the PE, if the PE also has some obstacles that may obstruct the

user’s path.

6.4.2.2 Changes in Virtual Environment Size

When investigating the effects of the size of the VE on navigability, we considered the PE

and VEs shown in Figure 6.1. Similar to the object density experiment, we chose a fixed PE that

could be found in a home (via [232]), and constructed three VEs of varying sizes (400m2, 900m2,

and 1600m2), each with different boundary shapes and ten different, random polygonal objects.

We see that the mean and maximum ENI values increase as the area of the VE increases.

Intuitively, this is expected since VEs with larger area are more likely to lead to longer paths

that cannot be traversed from within the small PE. When the navigable area of the VE decreases,

users are more likely to travel on virtual paths with shorter segments, since they will be forced

to make more turns to avoid objects in the VE. These turns increase the chance that the user

will also turn away from nearby objects in the PE and incur fewer collisions, as the ENI scores
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suggest. This result is also confirmed by the validation experiment in Subsection 6.5.1, in which

we estimate the navigability of the ⟨PE, VE⟩ pairs in Figure 6.1 via simulated paths. Thus, from

this experiment, it is clear that increasing the area of the navigable space in the VE leads to more

collisions in VR locomotion.

6.4.3 Design Guidelines Based on ENI

Although ENI helps us understand how the layout of the environment influence navigability

of a ⟨PE, VE⟩ pair, it is not always straightforward to translate an ENI metric into a more

compatible ⟨PE, VE⟩ pair. In this section, we provide some high-level guidelines on how to

design VEs that are more amenable for VR locomotion, relative to a given PE. We note that these

are not strict rules for designing virtual environments, but rather are intended to be suggestions

on how to create environments that are more likely to yield a more comfortable navigation

experience for users.

In general, collision-free locomotion in VR is most difficult when the VE contains large,

open spaces while the PE is small and cluttered with objects. This is an undesirable situation

because in these cases, it is more likely that the user will travel on a long, straight path in the

VE which cannot be traversed in the PE due to obstacles. To avoid this, designers of VEs

should try to place objects in the VE such that the navigable area in the VE is reduced (e.g.

subsubsection 6.4.2.1). This forces users to travel on virtual paths with more turns as they avoid

virtual objects–these turns make it more likely that the user will also turn away from obstacles

in the PE. Virtual structures like narrow corridors are favorable since they restrict the number of

possible paths that the user can travel along, which decreases the chance that their particular path

yields a collision in the PE.
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In addition to reducing the frequency of large, open spaces, designers may want to place

objects in the VE that have a similar size, shape, and distribution to objects in the PE if possible.

This has the effect of making the PE and VE more similar on a local scale (i.e. the visibility

polygons are more similar), which further increases the chance that the user can travel along

collision-free paths (see Figure 6.3).

6.4.4 Performance Analysis of RDW Controllers

Redirection controllers are algorithms that are used to compute the correct redirection that

is applied to optimally steer the user away from physical objects [140]. The performance of

controllers is typically evaluated by measuring the number of times the user is reset after getting

too close to a physical object [11, 132, 205, 231, 232], the average distance the user is able to

walk before initiating a reset [11, 192, 205, 231], or the average strength of redirection during

locomotion [11, 119, 231]. These performance metrics are useful, but they do not provide any

information in terms of how similar is the user’s proximity to obstacles in the PE and VE. By

calculating the ENI measure between corresponding physical and virtual configurations along

a given path through both environments, we can gain an understanding of the differences in

the user’s physical and virtual proximity to objects. This kind of performance metric provides

information about the user’s locomotion experience (for a given RDW controller) that cannot be

derived from traditional performance metrics such as number of resets or intensity of redirection.

In Figure 6.8, we show an example result of computing the ENI of a user’s configurations

across a path. In this example, the user is located in an identical 10m × 10m ⟨PE, VE⟩ pair

with no obstacles. We simulated the user walking on the same virtual path while being steered

with three different RDW controllers: artificial potential fields (APF) [205], alignment-based
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redirection controller (ARC) [231], and steer-to-center (S2C) [84]. For the path segment shown

in Figure 6.8, the ENI measures were [µ = 34.387, σ = 11.680] for APF, [µ = 11.468, σ = 8.513]

for ARC, and [µ = 34.177, σ = 9.532] for S2C. This result suggest that when steered by ARC,

the user is, on average, in a physical configuration that is more compatible with their virtual

configuration than when they are steered with APF or S2C. That is, for most configurations along

the path, the user is more likely to be able to travel on a collision-free path when steered by ARC

than by APF or S2C. In the short path segment we considered in this example, this is indeed the

case as the user incurs zero collisions when steered by ARC, but incurs two resets when steered

by APF and S2C. ARC was designed to steer the user in an attempt to match their physical and

virtual proximity [231], so our metric’s performance matches the expected behavior of ARC.

This conclusion is further supported by comparing the shape of the virtual path to each of the

physical paths. It is clear from Figure 6.8 that the user’s physical path when steered by ARC is

more similar to the virtual path than the paths generated by APF and S2C algorithms.

6.5 User Studies and Validation

To validate the ENI metric, we collected navigation data from simulations and two user

studies. The goal of the ENI metric is to provide insight into the relationship between environment

layouts and ease of collision-free locomotion in VR. Therefore, it is expected that our metric is

correlated with the navigation behavior of users or provides new insights in terms of designing

⟨PE, VE⟩ pairs. To this end, we show that our metric correctly identifies pairs of physical

and virtual configurations that allow for easier collision-free navigation (Subsection 6.5.1) and

that ENI is correlated with users’ tendency to avoid physical objects during locomotion in VR

(Subsection 6.5.2).
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6.5.1 Experiment 1: Simulation Experiment

6.5.1.1 Design

In this experiment, we simulated a user walking along 50 paths in different pairs of physical

and virtual environments. Specifically, we tested the six environment pairs examined in Subsection 6.4.2

and the three pairs used in [231]. In each environment, we simulated the user traveling along

50 different paths with a random start and end configuration in the VE, and a random starting

configuration in the PE. Paths through the VE were generated using the RRT* algorithm [102]

due to its efficiency and ability to guarantee complete paths. For each path, the simulated user

would traverse the path in the VE and the PE simultaneously. If the user got too close to an object

in the PE, a reset maneuver was initiated such that they were reoriented away from the nearby

object. Users were reset with the reset-to-gradient technique presented in [205] due to its ability

to work in a variety of different environments. To quantify the navigability of the environments

in accordance with the definition of navigability we adopt in this chapter (see Subsection 6.2.1),

we computed the average distance travelled before a reset was incurred across all 50 paths in each

⟨PE, VE⟩ pair.

6.5.1.2 Results

The results of the average distance walked between resets is shown in Table 6.2. In general,

we see that as the ENI decreases (i.e. navigability improves), the average distance walked

between resets increases, indicating that the simulated user was able to travel further before

being interrupted by a reset. This trend in the results confirms that ENI is correctly able to

identify ⟨PE, VE⟩ pairs that are better or worse for natural walking in VR.

Although the high-level trends showed that lower ENI is associated with increased navigability,
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there are some interesting results in the data. First, we see that there is only a small difference

in average distance walked between the ⟨PE #1, VE #2⟩-⟨PE #1, VE #3⟩ and ⟨PE #2, VE #4⟩-

⟨PE #2, VE #5⟩ environment pairs, despite the large differences in their ENI scores. While the

cause of this is not clear, we believe that this plateauing effect in the distance walked might be

an indication of the lower bounds on navigability for a given PE. That is, beyond a certain ENI

score, the navigability does not get significantly worse as the ENI increases because the difficulty

in navigation becomes maximally constrained by the layout of the PE.

Finally, we see that the ⟨PE #4, VE #8⟩ pair yields the worst navigability, despite having a

low ENI score. Though initially surprising, this result makes sense when we consider the actual

shape of PE #4 (see Figure 6.12). Although the PE and VE have similar local structure, the

PE consists only of narrow corridors, which are inherently difficult to navigate without getting

too close to any obstacles. In this case, small deviations from a path that travels directly down

a corridor are likely to lead to resets. Additionally, the reset-to-gradient maneuver reorients

users such that they face directly away from the object they got too close to. In this particular

environment, this means that the user often faces the opposite wall of the corridor, which they

then walk directly towards after finishing the reset. Thus, the simulated user gets stuck, oscillating

back and forth between the walls of the corridor. This result highlights one shortcoming of the

ENI metric: by only considering the geometry of the environments, and not considering the

motion behavior of the user through the environments, some aspects of the environment structure

that are important for navigability cannot be properly evaluated using our metric.
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Distance Between Resets ENI score

⟨PE, VE⟩ pair µ (m) σ (m) µ σ

⟨PE #1, VE #1⟩ 3.337 1.869 80.297 32.020
⟨PE #1, VE #2⟩ 3.082 1.802 241.510 56.741
⟨PE #1, VE #3⟩ 2.991 1.701 760.146 245.238
⟨PE #2, VE #4⟩ 3.031 2.382 485.231 96.049
⟨PE #2, VE #5⟩ 3.065 2.515 345.408 112.748
⟨PE #2, VE #6⟩ 3.505 2.347 206.276 75.778
⟨PE #3, VE #7⟩ 6.075 2.835 0.530 0.251
⟨PE #4, VE #8⟩ 0.989 0.878 9.101 4.836
⟨PE #5, VE #9⟩ 3.129 1.993 78.357 33.292

Table 6.2: Navigability results from simulating 50 random walking paths in different ⟨PE, VE⟩
pairs. Here, we define navigability as the average distance that the user can walk in the VE before
colliding with an object in the PE, across all configurations in the PE and VE (Subsection 6.2.1).
In general, the navigability of the environments decreases as the ENI score increases, indicating
that our metric is able to correctly identify ⟨PE, VE⟩ pairs that are less amenable to real walking.

6.5.2 Experiment 2: User Studies

In our second experiment, we hypothesized that ⟨PE, VE⟩ pairs with higher ENI scores will

cause users to incur more resets than ⟨PE, VE⟩ pairs with low ENI scores.

6.5.2.1 Design

We conducted two user studies. In both studies, participants were tasked with reaching a

goal in the VE, indicated by a floating yellow block. In the first study, participants navigated

through a VE with no obstacles, while the layout of the PE changed to have increasing density

of objects. Participants completed the walking task a total of three times for each ⟨PE, VE⟩ pair,

with the goal location being different in each of the three trials (see Figure 6.10). The dimensions

of the PE and VE were the same (4.37m × 6.125m). Twenty people participated in the first

study (8 female (age µ = 23, σ = 2.6), 11 male (age µ = 23.4, σ = 2.5), 1 non-binary (age

25)). Participants completed the task in blocks organized by PE (all three tasks in one PE were
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completed before changing to the next PE), and the order of PEs was counterbalanced. After

completing the experiment, all participants completed the Kennedy-Lane Simulator Sickness

Questionnaire (SSQ) [104]; the largest reported SSQ score was 33.66 (µ = 8.727, σ = 9.494).

The first study took about 20 minutes for each participant, and they were compensated with a $10

Amazon gift card.

In the second study, participants navigated through three different VEs, each with a varying

size (similar to Figure 6.1). The PE was the same for each of the three VEs. Participants

completed a total of three walking trials, each experiencing a random goal location in each trial

(the same for each participant). The order in which participants experienced the ⟨PE, VE⟩ pairs

was the same across participants. A total of 10 people participated in the second study (9 male

(age µ = 25, σ = 3.5), 1 female (age 25)). Participants completed the navigation task once in

three different VEs, in the same order across all participants. After completing the experiment,

all participants completed the Kennedy-Lane Simulator Sickness Questionnaire (SSQ) [104]; the

largest reported SSQ score was 29.92 (µ = 7.106, σ = 10.043). The second study took about 15

minutes for each participant, and they were compensated with a $10 Amazon gift card.

During our user studies, if the user got within 0.25m of an obstacle, a reset was initiated and

they were instructed to turn 180◦ in the PE, while the virtual camera did not rotate. To increase the

variety in the traveled paths, each trial started with the user facing a random direction in the VE

(participants all experienced the same random direction for a particular trial, but the directions

were random from trial to trial). Participants also completed a practice trial at the start of the

experiment to get them accustomed to the hardware and experiment task. Both studies were

approved by the authors’ university’s Institutional Review Board.
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6.5.2.2 Results

The results of the two user studies can be seen in Table 6.3. We validate our metric by

measuring the navigability (average distance walked between resets) as the ENI changes. Results

show that as the ENI increases (i.e., ⟨PE, VE⟩ compatibility decreases), users walked less distance

between resets (i.e. navigability decreased). This confirms that our ENI metric is correctly able

to identify ⟨PE, VE⟩ pairs which have comparatively more or less navigability.

Interestingly, the trends in the results from the user studies do not show the same plateauing

effect as the results from Subsection 6.5.1. In the simulation experiments, our results show that

two ⟨PE, VE⟩ pairs can have very large differences in ENI scores, but can yield very similar

distances walked between resets. While we are not certain why the plateauing effect did not

appear in the user study results, we believe it may be due to the lower total number of paths

collected, or due to the smaller differences in ENI scores between ⟨PE, VE⟩ pairs, compared to

the differences in the simulation experiments. Future work should study this plateauing effect in

more detail.

Distance Between Resets ENI score

⟨PE, VE⟩ pair µ (m) σ (m) µ σ

⟨PE #6, VE #10⟩ 3.217 1.398 0.530 0.251
⟨PE #7, VE #10⟩ 2.927 1.548 8.072 1.013
⟨PE #8, VE #10⟩ 2.390 1.153 14.097 0.612
⟨PE #9, VE #11⟩ 4.098 2.168 27.131 8.864
⟨PE #9, VE #12⟩ 3.688 2.604 102.129 24.390
⟨PE #9, VE #13⟩ 3.559 2.302 217.361 48.958

Table 6.3: Navigability results from two separate user studies. In the first user study (first three
rows), users walked towards a goal location in a static VE while located in three different PEs. In
the second study (bottom three rows), users searched for a goal location in different VEs while
located in the same PE. In both situations, our results showed that navigability decreases as the
ENI score increases, validating the correctness of our metric.
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6.6 Conclusion, Limitations, & Future Work

In this work, we presented Environment Navigation Incompatibility (ENI) metric, a novel

metric for quantifying the navigability of a pair of physical and virtual environments, based on

their geometric layouts. ENI measures the navigability of a ⟨PE, VE⟩ pair by measuring the

similarity (compatibility) of the two environments, since collisions during locomotion in VR

are mainly caused by differences in the layouts of the PE and VE. By uniformly sampling the

environments and computing visibility polygons at sampled points, our metric accurately captures

the features of the environments that are amenable to collision-free navigation (namely, the local

surroundings of a user across the PE and VE). We validate our metric through simulations and two

user studies, showing that ENI can accurately identify ⟨PE, VE⟩ pairs that are more amenable to

collision-free navigation without requiring locomotion data. In general, users were able to walk

further before incurring a reset in environment pairs that our metric identified as more navigable.

Although the ENI metric is effective at identifying compatible ⟨PE, VE⟩ pairs for RDW,

it has some limitations. First, the computation time can be long if the environments have a

large number of sampled points or have a high number of obstacles. Our implementation was

done in Python and was not parallelized, so there is room for significant speed-up by porting

the implementation to a faster language and by taking advantage of multithreading for visibility

polygon computation. Another limitation of ENI is that it is currently limited to static environments.

Extensions of ENI to environments with dynamic obstacles will likely require adding a temporal

component to the computation, which may increase the computation time even further. Additionally,

ENI provides a “best case” mapping of virtual configurations to physical configurations. This

best case mapping can be misleading for assessing navigability in some cases, since many virtual
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configurations can map onto the same physical configuration. Another limitation of ENI is that

it only considers the layouts of the environments, and not any other factors that are known

to influence the navigation experience during locomotion, such as the specific paths travelled.

Finally, the validation experiments were limited in that we could not test ENI on a large corpus

of environment pairs. Although we believe this does not affect the validity of our metric, it is

important to evaluate the accuracy of any metric in as many scenarios as possible.

There are many avenues for future work in this area. Since our experiments showed

mixed results in terms of the correlation between ENI scores and navigability measures, we

would like to further study the ENI metric with a larger set of benchmark environments to

get a better understanding of the relationship between our ENI metric and the navigability of

environment pairs. Additionally, more user studies should be conducted to investigate whether

or not ENI aligns with users’ subjective perception of the navigability, though this will require

careful consideration to ensure that all participants have the same notion of “navigability.” Another

area for future work is to investigate the cause of the plateauing effect we saw in navigability

scores in Subsection 6.5.1. A detailed understanding of the worst-case navigability for given

⟨PE, VE⟩ pairs may allow us create standardized benchmarks against which we can compare

the efficacy of different locomotion interfaces. Finally, if the computation time for ENI can be

improved to interactive rates, we believe that it will also be interesting to evaluate the effectiveness

of using ENI to help optimize the layouts of VEs to make them more amenable to navigation

(similar to other architecture tools like Goldstein et al. [68]).
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Figure 6.4: Top row: Two visibility polygons Pphys and Pvirt in a ⟨PE, VE⟩ pair. Bottom row
(left): Pphys and Pvirt have been translated such that their kernels lie on the same 2D position
in the plane. Bottom row (right): The result of the boolean difference operation Pvirt \ Pphys

is shown as the red polygons. These polygons represent all the regions of Pvirt that cannot be
accessed when the user is located at kphys and kvirt in the PE and VE, respectively. Our metric
uses the total area of Pvirt \ Pphys as a measure of the similarity of the user’s local physical and
virtual surroundings.
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Figure 6.5: The effect of selecting a bar of the histogram in our interactive visualization. When
a bar is selected (right), the physical and virtual points that contribute towards this histogram bar
are highlighted in orange (left and middle).

Figure 6.6: The effect of selecting a set of virtual points using the lasso tool. When virtual points
are selected (left), the corresponding most compatible points (computed via Equation 6.3.4.3) are
shown in red in the PE (right).

171



Figure 6.7: ENI metric scores for three different ⟨PE, VE⟩ pairs, where the PE is static and the
density of objects in the VE increases. As the density increases, the amount of navigable space
decreases, creating a more navigable ⟨PE, VE⟩ pair due to the small size of the PE.
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Figure 6.8: Top left: A virtual path in an empty 10m × 10m VE. Top right, bottom left, and
bottom right: The physical path the user travels on when steered by APF [205], ARC [231], and
S2C [84]. The physical paths are colored according to the ENI scores between the corresponding
points along the physical and virtual paths. The path yielded from ARC is more compatible with
the virtual path, suggesting that the user is less likely to incur collisions during locomotion with
ARC.
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Figure 6.9: Left: A user in the lab space in which we conducted our user evaluations. Right: A
screenshot of the user’s starting configuration in the VE at the beginning of a trial in our first user
study.

Figure 6.10: Diagrams of the layouts of the VE and PEs used in the first user study. The blue
circle indicates the user’s starting position in each environment, and the green, pink, and red
circles indicate the locations of the goal in the VE during different trials. The dimensions of each
environment are 4.37m× 6.125m.
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Figure 6.11: Environment A introduced by Williams et al. in [231].

Figure 6.12: Environment B introduced by Williams et al. in [231].
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Figure 6.13: Environment C introduced by Williams et al. in [231].
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Figure 6.14: The three environment pairs used in our first user study.
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Figure 6.15: The three environment pairs used in our second user study.
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Part III

Perception and Physiology During Natural Walking in Virtual Reality
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Chapter 7: Perceptual Sensitivity and Physiological Signals of Tolerance to Redirection

Figure 7.1: A visualization of our experiment paradigm and the properties of physiological
signals that we found to be correlated with scene motion during redirected walking (RDW).
(A) We conducted a psychophysical experiment in which participants completed a rotation task
across hundreds of trials, with different amounts of additional scene motion injected into the
virtual environment during the rotation. Participants reported on whether or not they perceived
the additional injected motions and we computed their visual sensitivity to these motions. (B)
Our analyses revealed that as the speed of injected motions increased, the stability of participants’
gaze (left) and posture (right) decreased. These results show, for the first time, a direct correlation
between the strength of redirection (injected visual motion gains) and physiological signals.

In this chapter, we study the correlations between redirected walking (RDW) rotation gains

and patterns in users’ posture and gaze data during locomotion in virtual reality (VR). To do

this, we conducted a psychophysical experiment to measure users’ sensitivity to RDW rotation

gains and collect gaze and posture data during the experiment. Using multilevel modeling, we

studied how different factors of the VR system and user affected their physiological signals.

180



In particular, we studied the effects of redirection gain, trial duration, trial number (i.e., time

spent in VR), and participant gender on postural sway, gaze velocity (a proxy for gaze stability),

and saccade and blink rate. Our results showed that, in general, physiological signals were

significantly positively correlated with the strength of redirection gain, the duration of trials, and

the trial number. Gaze velocity was negatively correlated with trial duration. Additionally, we

measured users’ sensitivity to rotation gains in well-lit (photopic) and dimly-lit (mesopic) virtual

lighting conditions. Results showed that there were no significant differences in RDW detection

thresholds between the photopic and mesopic luminance conditions.

7.1 Introduction

Natural walking in virtual environments (VEs) is important for providing users with a

comfortable and immersive virtual reality (VR) experience [52, 188]. Redirected walking (RDW)

is a promising natural locomotion interface that allows users to explore VEs that are larger

than the available physical environment (PE) [157, 158]. RDW works by adding imperceptible

rotations and translations (controlled by gains) to the virtual camera’s trajectory through the VE

as the user moves around in the PE. In order for RDW to be effective, it is crucial that these

added movements are small enough to remain imperceptible to the user. If they are not, it is

common for the user to feel symptoms of simulator sickness or have difficulty controlling their

locomotion in the VE [140, 187]. To avoid this, researchers have measured the maximum strength

of redirection that can be injected before users can reliably perceive it; the weakest RDW gain

that is perceptible to the user is known as the perceptual threshold (or detection threshold), and

it is generally advised that gains should not exceed this threshold value in order to avoid causing

discomfort for the user [187].
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A significant amount of research has been done to study how RDW thresholds change

according to different system configurations and using different measurement methods. One

major takeaway that can be drawn from prior work is that perceptual thresholds for RDW are

highly variable depending on system and user factors: thresholds change depending on gender

[139, 230], field of view [230], level of embodiment [139], amount of exposure to RDW [19],

audio feedback [66], and from user to user [92]. Typically, RDW thresholds are measured using

a psychophysical experiment, which often takes multiple hours for one participant, can be very

repetitive and tiring for users, and different psychophysical fitting methods can yield different

results under the same experimental conditions or may be sensitive to lapses in perception [226,

227]. The high variability of RDW thresholds is not compatible with the psychophysical methods

used to measure them–small changes in the system configuration may yield different thresholds

that would warrant re-running the long psychophysical calibration process in order to ensure

that the applied redirection gains remain below the user’s detection thresholds. Thus, in order

for RDW to become a more usable locomotion interface in real-world consumer settings, it is

crucial that we develop better methods for quickly and accurately estimating the imperceptibility

of RDW gains during virtual locomotion.

Physiological signals may be one potential solution to this problem. Many researchers

have shown a link between users’ perceptual experiences in VR (e.g., sense of presence [131]

and jitter perception [127]) and their physiological signals (e.g., gaze signals [141], galvanic

skin response [95], EEG signals [109], and postural stability [134]). Similarly, researchers in

the human vision community have shown that gaze behavior can be informative for estimating

an observer’s level of engagement with the scene content [155]. However, despite the growing

evidence that physiological signals can be useful for inferring about a user’s subjective experience
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and internal state, researchers have yet to demonstrate a direct correlation between RDW gains

and any physiological signals.

Main Results: In this work, we take a first step towards a more efficient and accurate

estimation of RDW gain perceptibility by investigating the correlations between RDW gain

strength and patterns in users’ physiological signals. We conducted a psychophysical experiment

to measure users’ perceptual thresholds for RDW rotation gains and recorded physiological

signals (gaze and posture data) during the experiment. The first main contribution of our work

is an initial investigation into the correlations between RDW rotation gain strength and patterns

in gaze and posture data. To improve the applicability of our results, we chose to study gaze and

posture data because these are physiological signals that are readily available in most modern

consumer HMDs; other signals typically require the integration of additional sensors. We limited

our study to rotation gains since they allow for a wider range of gains to be applied before users

begin to perceive them, compared to curvature and translation gains [187]. The second main

contribution of our work is that we measured how rotation gain thresholds change as a function

of the luminance of the virtual content. We measured perceptual thresholds in photopic and

mesopic light conditions to observe how the perceptibility of rotation gains changes depending

on the light level of the virtual content being viewed. Our results showed that gaze and postural

stability are significantly correlated with the properties of the RDW system, and that detection

thresholds do not change significantly in photopic compared to mesopic luminance conditions.

In particular, we found that:

• There were small but significant correlations between rotation gain strength and physiological

signals of posture and gaze. Specifically:
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– Each unit increase in rotation gain was correlated with, on average, a postural sway

increase of 4.553 cm, a gaze velocity increase of 0.897◦/s, a blink frequency decrease

of 0.804 per trial, and a saccade frequency increase of 2.869 per trial.

– Each additional trial completed (i.e., time spent in VR under the effects of RDW)

was correlated with, on average, a gaze velocity increase of 0.00704◦/s and a blink

frequency increase of 0.00520 per trial.

– Each additional second spent under the effects of RDW per trial (i.e., trial duration)

was correlated with a gaze velocity decrease of 0.111◦/s, a blink frequency increase

of 0.275 per trial, and a saccade frequency increase of 2.773 per trial.

• Detection thresholds for RDW rotation gains were not significantly different between the

well-lit (photopic) and poorly-lit (mesopic) virtual lighting conditions.

7.2 Background and Related Work

7.2.1 Redirected Walking Thresholds

Redirected walking (RDW) is a locomotion interface that enables users to explore VEs that

are larger than their PE [158]. It works by adding imperceptible rotations and translations to the

virtual camera’s trajectory as the user moves around in the physical space, effectively creating a

mismatch between the user’s physical and virtual movements. The magnitude of these injected

rotations and translations is determined by parameters called gains, and the smallest gain that

is reliably perceptible to a user is known as their perceptual threshold. Rotation gains modify

the amount that the user turns in place, translation gains modify how far the user travels while

walking, and curvature gains cause users to walk on curve physical trajectories while following

straight virtual trajectories. Ideally, the gains applied during locomotion are smaller than the
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perceptual thresholds in order to mitigate the likelihood that the user feels symptoms of simulator

sickness or breaks in presence [187].

Applying perceptually comfortable thresholds requires us to estimate the user’s perceptual

thresholds, and this is typically done using psychophysical experiments which often take multiple

hours to complete per participant [67]. The first comprehensive study that measured RDW

thresholds was conducted by Steinicke et al. [187]. Since then, many researchers have studied

how thresholds change according to different VR system factors. For example, prior work

has shown that RDW thresholds are influenced by HMD field of view [230], walking speed

[137, 138], level of embodiment in VR [139], the rate of change of gains [41], and the amount

of exposure to RDW [19]. Additionally, individual differences between users have an effect on

thresholds. Differences in thresholds have been found between men and women [138, 139, 230],

and individual thresholds can vary widely from participant to participant [92, 138]. Research

has also shown that sensitivity to RDW can change depending on the context of the virtual

experience, such as while the user is opening a virtual door [87] or is distracted by virtual objects

or tasks [139, 148, 230], or the size of the virtual room [106]. Finally, there is some evidence that

estimated threshold values can vary depending on the psychophysical methodology used [71, 92].

In summary, these results show that RDW thresholds are complex and nuanced: thresholds

depend on user factors, device factors, VE context, and amount of user experience. As VR

technology improves and increases in popularity, VR devices will gain new features and capabilities,

and users will engage with VR in a wider range of (physical and virtual) contexts. Thus, in order

to help make RDW a practical technology that does not require hours of calibration before it

can be used in every new scenario, our work investigates the use of physiological signals for

estimating users’ ability to perceive redirection. Furthermore, to test the reliability of these
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signals in a variety of different configurations, we study how thresholds change according to the

luminance level of the display. We chose to study thresholds as a function of luminance because

it is a common visual feature of virtual content that is likely to vary widely for different virtual

experiences, and since we expect luminance to become a more-relevant feature in future devices

with the advent of high-dynamic range VR [129]. Furthermore, prior work in motion perception

[72, 74, 135] provides evidence that luminance has an effect on an observer’s perception of

motion, which has implications for users’ perception of RDW gains in VR.

7.2.2 Physiological Signals of Users’ Internal State

In addition to thresholds being highly dependent on system and user factors, another challenge

with understanding user sensitivity to RDW is the fact that psychophysical experiments are often

very time consuming and expensive [143, 223, 225]. Psychophysical experiments often take

multiple hours and require users to complete a repetitive, tedious task in order for researchers to

estimate their sensitivity to the stimulus in question. To mitigate this problem, researchers have

developed different techniques for sampling the stimulus parameter space to more efficiently

converge to the user’s detection threshold (e.g. PEST [204], QUEST [223], AEPsych [143]), but

these methods can still be sensitive to lapses in judgement or may require careful calibration to

maximize the likelihood of convergence. Furthermore, traditional psychophysics requires users

to first perceive the stimulus (possibly multiple times) and then answer a question about what

they perceived, which is an intrusive process that requires its own dedicated calibration session.

To help mitigate these constraints, researchers have shown that physiological signals can be used

to draw conclusions about a user’s subjective feelings of comfort or other aspects of their internal

state such as level of engagement.
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7.2.2.1 Gaze Stability

Prior work has shown that gaze movements, and in particular metrics for gaze stability, are

correlated with symptoms of motion sickness in users. Ujike et al. [208] found that torsional eye

movements had a significant correlation with symptoms of motion sickness for rotations about

the roll axis. Similarly, Hemmerich et al. [77] found a small but significant correlation between

motion sickness and eye movements (specifically, scan-path length and dispersion). Bouyer et al.

[20] had participants repeatedly perform a “torso rotation” movement in which they shifted their

gaze side-to-side between two targets placed at either end of their horizontal peripheral vision,

which required coordinated head, eye, and torso rotations. This motion is fairly similar to the

rotation movement participants completed in our rotation gain discrimination task. Bouyer et al.

found that gaze stability (measured by participants’ ability to consistently focus their gaze on a

target) decreased as feelings of motion sickness increased. Inspired by those works, we evaluate

the correlations between redirection strength and participants’ average gaze velocity, where gaze

velocity is used as a proxy for gaze stability since we did not instruct participants to fixate on

a particular target in the virtual environment. Additionally, we measure correlations between

redirection strength and saccade and blink frequency since these are gaze metrics that are readily

available in eye-tracked HMDs.

7.2.2.2 Postural Stability

Posture control and optic flow are tightly linked to locomotion control [86, 100, 103, 114,

130]. That is, prior work has shown that optic flow at least partially modulates locomotion such

that users alter their locomotion behavior to better match the perceived optic flow [58, 153].

Furthermore, alteration of the visual environment can induce a compensatory postural response
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[118]. Wang et al. [219] showed that large changes in torso sway can be strongly correlated with

perturbations in balance, which precede falls by the walking person. In VR, researchers have

used measures of postural stability to estimate users’ level of simulator sickness. Chardonnet et

al. [31] showed that the spread of the center of gravity and the shape of postural sway in the

time domain can serve as indicators of simulator sickness in virtual reality. Finally, Soffel et

al. [181] demonstrated how a VR HMD can be used to measure postural stability without the

need for a balance board or force plates. Riccio and Stoffregen [160] proposed a theory that

postural instability is the source of motion sickness that user experience (both in real and virtual

environments). Numerous studies have been conducted that provide some empirical evidence to

support this theory [12, 189, 190, 191, 202], though we note that some studies have found a lack

of relationship between postural stability and feelings of motion sickness [40, 51, 222]. Given

the evidence from prior work that shows a link between postural sway and motion sickness, we

chose to study correlations between postural sway and redirection gain strength since simulator

sickness is a common side effect of RDW.

7.2.3 Luminance & Motion Perception

Researchers in the human vision community have studied the degree to which an observer’s

ability to detect motion is affected by the luminance of the visual content. Sara et al. [164]

found that observers had decreased motion detection performance in low-light conditions, while

Takeuchi et al. [201] showed that velocity discrimination thresholds vary depending on luminance

level. For illusory motion in static stimlui, Hisakata et al. [82] showed that motion perception

varied as a function of retinal illuminance. Interestingly, Billino et al. [18] found that detection

thresholds for biological motion were the same for photopic and scopotic conditions, despite the
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majority of prior research showing that motion perception performance generally decreases as

luminance decreases [239]. Overall, the literature on motion perception in different light levels

shows that perception of motion changes according to changes in luminance, which motivated

us to study how users’ sensitivity to RDW gains changes as a function of the luminance of the

virtual content shown on the HMD. Indeed, with the introduction of high dynamic range VR

HMDs [129], we believe that it is important for us to gain a better understanding of motion

perception in VR according to the light level of virtual content.

7.3 Experimental Methodology

In order to effectively utilize RDW, the injected rotations and translations should lie below

the user’s detection thresholds so as to avoid making the user feel sick. However, measuring

these detection thresholds is a tiring and repetitive process that often entails multiple hours

of psychophysics. Furthermore, it is well-known that a user’s sensitivity to RDW can change

depending on various system and user factors such as field of view [230], amount of exposure

to RDW [19], and individual differences in perception [92]. This poses a problem since the

dynamic nature of RDW perceptibility implies that thresholds should be estimated frequently (as

different factors influence a user’s sensitivity change during the virtual experience), but current

methods for estimating sensitivity to RDW often require multiple hours or, at best, on the order of

∼20− 30 minutes for adaptive methods [225]. Our motivation with this work is to investigate to

what degree the strength of redirection gains is correlated with different physiological signals of

the user, in hopes that such insights could be used to estimate a user’s sensitivity to RDW in real

time via online analysis of physiological signal patterns, thus bypassing the long psychophysical

estimation process that has traditionally been used for RDW.

189



To achieve this, we ran a psychophysical study in which we estimated participants’ RDW

gain detection thresholds while also collecting different physiological signals (posture and gaze

data). After collecting the data, we studied the correlations between redirection strength and

different metrics derived from participants’ physiological data. We limited our study to rotation

gains since they allow for larger magnitudes of redirection to be applied [187] (giving us a wider

range of gain values with which we can test for correlations). Additionally, we chose to study

participants’ posture data and gaze data since these are two biosignals that are readily available

in most modern VR devices without requiring external devices, and since there is a large amount

of prior work (Subsection 7.2.2) to suggest that redirection gains will be correlated with patterns

in users’ physiological data.

Note that in this work, we are not directly measuring a correlation between physiological

signals and a user’s subjective level of comfort (i.e., tolerance for redirection gains); we only

measure the existence of any correlations between redirection gain strength and posture/gaze

data. Since we are not aware of any prior work that has established a direct correlation between

redirection gain strength and physiological signals, the first step to using physiological signals

as an alternative to psychophysics is to confirm that the strength of redirection gains are indeed

correlated with patterns in a user’s biosignals. Once such a correlation has been established,

follow-up works should study to what extent these signals can serve as a direct indicator of a

user’s subjective level of comfort during locomotion.

Additionally, in an attempt to better understand the different factors that may affect sensitivity

to RDW, we measured users’ sensitivity to rotation gains in both bright (photopic) and dark

(mesopic) luminance conditions. Considering the gamut of different virtual experiences users

may find themselves in VR, it is not unlikely that users will interact with virtual environments
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that have different ranges of luminance values (e.g. visual content for horror games tend to

have low luminance, while job simulators are more likely to have bright visual content akin to

daytime luminance). Prior work in human perception has shown that observers can have differing

sensitivity to visual motion depending on the luminance of the visual stimuli (Subsection 7.2.3).

Considering these facts and the introduction of high dynamic range VR [129], we were motivated

to study how sensitivity to redirection changes depending on the luminance of the virtual content.

7.3.1 Experiment Design & Stimuli

Our experiment was limited to rotation gains because rotation gain experiments require less

physical space to conduct and they allow for larger redirection than curvature or translation gains

[187]. We had two hypotheses that we aimed to test with our experiment:

H1 Rotation gains will be significantly correlated with patterns in participants’ gaze and posture

data.

H2 Rotation gain thresholds are different in mesopic viewing conditions compared to photopic

viewing conditions.

For H1, we hypothesized that the strength of redirection would predict changes in participants’

posture and gaze data since prior work showed that these biosignals are correlated with feelings

of MS, and MS is frequently induced by prolonged exposure to RDW [140]. The intuition

behind H2 is that prior work in motion detection has shown that observers tend to have different

sensitivity to visual motion depending on the luminance level of their surroundings (Subsection 7.2.3),

and a large component of users’ ability to detect RDW is their sensitivity to visual motion.

Therefore, we hypothesized that the light level of the virtual content would have an effect on

users’ ability to detect the presence of RDW gains.
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To measure RDW thresholds, we conducted an experiment that required users to repeatedly

complete a 2-alternative forced choice (2AFC) task [67]. Participants were tasked with rotating

their whole body in place where they stand, either left or right (indicated by an arrow near the

top of the field of view), until they heard a beep tone that was their signal to stop rotating. After

the participant stopped rotating and maintained their current orientation for 1 second, a green

check mark appeared and the trial ended. If the user rotated too far or in the wrong direction

at the start of the trial, a yellow arrow appeared that signaled them to turn in the other direction

to complete the trial. The amount rotated in the virtual environment was always 90◦ (±5◦ so as

to avoid requiring infeasibly-precise rotation from the participants), but the amount of physical

rotation varied depending on the strength of the redirection gain applied. After the participant

completed the rotation task, the view faded to black and the user was prompted to answer the

following question [187, 230]: “Was the virtual movement smaller or greater than the physical

movement?” (Response options: Smaller, Greater). The gain applied on each trial was randomly

chosen from a set of nine gains {0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4}, and each gain was tested

12 times for a total of 108 trials. In order to elicit natural eye movements, the direction arrow

disappeared shortly after the user began rotating and participants were not given any instruction

on where they should look during the rotation trials.

An observer’s ability to discern objects in their surroundings changes depending on the

amount of light illuminating their environment. As the light level changes, the eye adapts and

vision improves over time in a process called light adaptation. In particular, when shifting to a

low-light environment, it can take up to two hours for the observer to fully adjust to the low-light

conditions [26]. This required us to separate the light and dark luminance conditions into two

separate blocks, so that the participants’ eyes could adequately adjust to the light level of either
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condition. If light and dark trials were interleaved within the same block, participants would not

have enough time to meaningfully adjust their vision to properly perceive the virtual content.

Blocks were separated by at least 12 hours and the order in which participants experienced them

was counterbalanced. In the light condition, the average luminance of the virtual content in the

HMD was about 25 cd
m2 (photopic vision). In the dark condition, the average luminance was about

0.4 cd
m2 (mesopic vision). The dark condition was implemented using a shader that uniformly

lowered each pixel’s brightness value to 2% of its original value. Pilot tests revealed that it was

not feasible to change the luminance of the virtual content to a scotopic level while having the

virtual content still visible to the user.

The virtual environment was an office with some pieces of office furniture placed throughout

the environment. We used this environment for our experiment since it is a familiar setting that

would have enough variation in color contrast and texture patterns to elicit sufficient optical flow

for adequate motion perception [221]. An example of the stimuli users saw in the photopic

condition is shown in Figure 7.2. After completing a block, simulator sickness symptoms were

recorded using the Kennedy-Lane Simulator Sickness Questionnaire (SSQ) [104]. Participants

received a $10 or $40 Amazon gift card after completing the first or second block, respectively.

7.3.2 Equipment & Participants

Our experiment was implemented using the Unity 2021.3.5f1 game engine and a Meta

Quest Pro VR HMD. The HMD was tethered to a desktop computer (CPU: Xeon 2.2GHz, RAM:

64GB, GPU: dual GTX2080, operating system: Windows 10). We conducted the experiment in a

private lab room with covered windows so that the light level in the room could be carefully

controlled. In the mesopic condition, the lights in the room were dimmed to mitigate any
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Figure 7.2: Screenshots of the virtual office environment used in our experiment (during the
photopic condition). Ambient office sounds were played to help mitigate the viability of using
sounds from the physical environment as a cue for the participant’s orientation in the physical
space. (A) The view of the environment that participants saw at the beginning of each trial. The
white arrow indicated to the user which direction they should rotate, and this arrow disappeared
after they rotated 5◦ from the starting position in the direction of the arrow. (B) An example view
of the environment at the end of a trial. When the user rotated 90◦ in the virtual environment
(±5◦), a beep tone was played that indicated that the user should stop rotating and maintain their
current orientation in the environment. After maintaining this orientation for 1 second, a green
check mark appeared to indicate that they successfully completed the trial.

adaptation to scoptic light levels in case the participant took a break and removed the HMD

during the experiment. The room could not be completely darkened because the Quest Pro uses

inside-out tracking that requires enough ambient light to be able to track the relative motion of

the physical surroundings. We recruited eight participants (four female, age µ = 23.625, σ =

2.504) who successfully completed both blocks of the experiment. Note that for psychophysical

experiments, it is common to have a single-digit number of participants since each participant

provides a large amount of data and each individual participant is treated as an individual replication

of the experiment [88, 180]. That is, the objective of psychophysics is to study the mechanics of

the perceptual system, so average population effects are largely uninformative since hypotheses
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are tested within the individual participants [88]. Participants had normal or corrected-to-normal

vision and were at least 18 years old. The HMD was adjusted to match the participant’s interpupillary

distance and the eye tracker was calibrated for the user.

7.4 Results

7.4.1 Rotation Gain Thresholds

Rotation gain thresholds were computed by fitting a cumulative Gaussian distribution to

participants’ average likelihood of responding “greater” for a trial. Threshold estimates are

shown in Table 7.1. To evaluate the effects of display luminance on perception thresholds,

we conducted a 9 (Gain: 0.6 : 1.4 : 0.1) × 2 (Luminance: photopic, mesopic) ANOVA. We

found that gain had a significant effect on the likelihood of the participant to respond “greater”

(F (8, 42) = 10.405, p < .0001, η2 = 0.39), but found no effect of luminance on this likelihood

of “greater” response (F (1, 42) = 1.405, p = 0.238, η2 = 0.00543). Additionally, no significant

interaction effects between threshold and luminance were found (F (8, 42) = 0.497, p = 0.857,

η2 = 0.02). These results do not support our first hypothesis that detection threshold values

would be different in low-light and well-lit viewing conditions. Since we found no effects of

luminance, the remaining analyses were conducted using the pooled mesopic and photopic trial

data. A plot of the psychometric curves for mesopic and photopic conditions averaged across all

participants is shown in Figure 7.3.

7.4.2 Simulator Sickness

Simulator sickness values for each participant are shown in Figure 7.4. In general, participants’

SS values were not abnormal for a rotation gain threshold experiment. Participant 5 showed the

highest SS levels (89.76 and 123.42 for the photopic and mesopic conditions, respectively) but
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ID (luminance) 25% µ (PSE) 75% σ

1 (photopic) 0.595 0.900 1.206 1.454
2 (photopic) 1.189 1.217 1.245 1.041
4 (photopic) 0.849 1.099 1.350 1.371
5 (photopic) 0.846 1.133 1.421 1.427
6 (photopic) 0.729 1.282 1.835 1.820
7 (photopic) 0.551 0.863 1.174 1.462
8 (photopic) 0.580 1.227 1.874 1.959
9 (photopic) 1.021 1.137 1.252 1.171

Average 0.795 1.107 1.420 1.463

ID (luminance) 25% µ (PSE) 75% σ

1 (mesopic) 0.683 0.933 1.184 1.372
2 (mesopic) 1.107 1.192 1.277 1.127
4 (mesopic) 0.944 1.233 1.522 1.429
5 (mesopic) 0.847 1.127 1.408 1.416
6 (mesopic) 1.010 1.605 2.200 1.882
7 (mesopic) -0.122 0.868 1.859 2.468
8 (mesopic) 0.668 1.214 1.759 1.809
9 (mesopic) 1.059 1.110 1.160 1.075

Average 0.775 1.160 1.546 1.572

Table 7.1: Individual psychometric fits for each participant in the photopic and mesopic light
conditions. We show the point of subjective equality (PSE), the standard deviation of the
Gaussian (σ), and the 25% and 75% detection threshold gains. We also show the average for each
of these values at the bottom of each sub-table. In general, participants exhibited RDW detection
thresholds that were within the ranges found in prior work [111], though there is significant inter-
participant variability [92]. Our results showed no significant differences in detection thresholds
between the two lighting conditions.

did not display any concerning symptoms during the experiment. Inspection of this participant’s

physiological data and threshold data (Table 7.1) did not reveal any noteworthy outlying data, so

we included their data in our analyses. A Wilcoxon signed-rank test revealed no significant effect

of luminance on SS values (T = 9.0, p = 0.398).
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7.4.3 Postural Data

First, we compute the average postural stability for each trial. For each trial, we compute

the centroid of the position of the HMD projected onto the floor (i.e., the HMD’s 2D position

ignoring height) across all trials. We use this centroid point as a proxy for the user’s base

position that they would stay in if there were no postural sway. Then, we compute the distance

between this centroid point and the HMD’s 2D position for each frame of the trial; this gives

a measure of how far the user strays from the central position on any given frame. Averaging

these distances yields our average postural sway metric, where a larger number indicates higher

instability (more time spent at a distance far away from the centroid point). Some example plots

of one participant’s posture data over the course of a trial are shown in Figure 7.5. In this chapter,

all postural sway values are reported in centimeter units.

To analyze the viability of using postural stability as a signal for RDW tolerance, we fitted

a multilevel model to the pooled participant trial data using the lme4 package and residualized

maximum likelihood in R. By doing this we are able to measure the correlation between independent

variables like rotation gain and physiological signals like postural stability. The model we fit was:

avgPosturalSway =(1|ID) + gain+ gender + trialNum

+ trialDuration+ gain× trialDuration.

(7.4.3.1)

Using this model, we treat the average postural sway as the dependent variable and model how

different independent effects may be correlated with postural sway. Our independent variables

are rotation gain, participant ID, participant gender, trial number, and trial duration. Participant

ID is treated as a random variable, while all others are fixed variables.

Results of fixed effects estimates indicated that gain (slope = 6.080, SE = 0.00612,
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t = 9.936, p < 0.0001) was significantly correlated with the average postural sway. Intuitively,

this can be interpreted as meaning that as the gain value increases by 1, the average postural sway

increases by 6.080 cm. No significant main effects of gender or trial duration were observed.

Random effects analysis revealed very little variability between participants (variance = 0.0218,

SD = 0.0148), which indicates that the results were not noticeably biased by any outlier participants

who completed our experiment (postural sway varied by only 0.0218 cm from participant to

participant, on average).

7.4.4 Gaze Data

In general, participants’ gaze behavior during trials was characterized by the optokinetic

reflex [121, 165] and vestibular nystagmus [96, 121]. Since vestibular nystagmus is known to

be present in both light and dark lighting conditions [70], we did not separate the analyses

based on lighting conditions. To study correlations between gaze behavior and the strength of

redirected walking, we measured how a different gaze-related metrics changed over the course

of our threshold experiment. In particular, we looked at average gaze velocity (◦/s), number of

blinks, and number of saccades. We classified saccades as any eye movements that exceeded

30◦/s [46, 212]. Note that since we did not instruct users to fixate on a specific target, we could

not directly measure gaze stability (in a manner similar to postural stability in Subsection 7.4.3).

That is, without knowing exactly what target the user intends to fixate on, we cannot measure to

what extent their gaze deviates from said target. Instead, we studied gaze velocity only during

fixations as a proxy measure for gaze stability. Manual inspection of patterns in participants’

vestibulo-ocular reflex (VOR) gain did not reveal any noteworthy patterns (the VOR gains during

fixations were near 1, as expected) so we did not conduct any further VOR gain analyses.
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We fitted a separate multilevel model to each of the three gaze metrics we studied (average

velocity, number of blinks, and number of saccades) using the lme4 package in R with residualized

maximum likelihood. By modeling average gaze velocity per trial as the dependent variable and

participant ID and gender, rotation gain, trial number, and trial duration as independent variables

(Equation 7.4.4.1), we found that trial number (slope = 0.007004, SE = 0.00139, t = 5.025,

p < 0.0001) and trial duration (slope = −0.123, SE = 0.0204, t = −6.000, p < 0.0001)

were significantly correlated with average gaze velocity. Additionally, there was a trending, but

not statistically significant, interaction effect between gain and trial duration (slope = 0.0724,

SE = 0.0372, t = 1.949, p = 0.0517). Random effects analysis revealed that there

was very little difference in average gaze velocity between participants (variance = 0.451◦/s,

SD = 0.671◦/s).

avgGazeV elocity =(1|ID) + gain+ gender + trialNum

+ trialDuration+ gain× trialDuration

(7.4.4.1)

We fit the same model for the number of blinks and saccades per trial. For number of blinks,

we found that trial number (slope = 0.00524, SE = 0.00226, t = 2.315, p = 0.0208), trial

duration (slope = 0.291, SE = 0.0280, t = 10.384, p < 0.0001), and the interaction between

gain and trial duration (slope = −0.194, SE = 0.0758, t = −2.558, p = 0.0106) were

significantly correlated. The difference in blink frequency between participants was non-trivial

but not particularly large (variance = 2.645, SD = 1.626). For number of saccades, the fitted

model revealed a significant correlation with gain (slope = 4.782, SE = 2.204, t = 2.169,

p = 0.0302) and trial duration (slope = 2.792, SE = 0.0916, t = 30.469, p < 0.0001).

Individual participants had very different saccade frequencies, as indicated by the random effects
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analysis on participant ID (variance = 16.07, SD = 4.009).

7.5 Discussion

7.5.1 Detection Thresholds and Sickness Scores

In general, the simulator sickness scores of our participants were similar to prior work

(e.g., [230]). Additionally, we were able to fit a psychometric curve to all of our participants’

data without convergence issues (Table 7.1). Note that some of the individual fitted thresholds

are somewhat wide, though it is already well-known that sensitivity to RDW can vary widely

from person to person [92, 138].

In our work, we did not find any significant effect of light level on detection thresholds.

We believe this is likely due to the complex, multimodal nature of self-motion perception since

participants’ ability to detect rotation gains depends on both visual and non-visual cues of self-

motion. In our experiment, users’ had to determine if there were additional visual motion gains

added to their virtual movement and compare the differences between their visual and non-visual

signals of self-motion. Self-motion perception requires the brain to integrate motion signals

from different sensory channels into a single, coherent “story” about how the body is moving

[34, 168]. Furthermore, this integration process is known to change depending on the reliability

of the sensory information [63], such that less reliable sensory inputs contribute less to the

determination of body motion. Thus, it is possible that participants integrated their signals of

self-motion differently for the photopic and mesopic conditions in our experiment, and that these

different cue-combinations may have yielded similar performance for rotation perception in our

experiment. Informal interviews with participants revealed that some participants employed a

different strategy for the photopic and mesopic conditions. For example, one participant stated
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that they found themself relying less on the visual information and more on the duration of each

rotation trial in addition to their non-visual motion signals to try to detect the redirection.

Furthermore, we note that our experiment task was a rotation discrimination task. Prior

work in vision science has shown that people are able to accurately perceive rotation magnitudes

even in complete darkness [172], which may further complicate the nature of RDW detection

in photopic and mesopic conditions. For these reasons, we believe that it is not necessarily

surprising that we did not see any significant differences in detection thresholds between the

photopic and mesopic conditions.

7.5.2 Gaze Data

Our results on gaze data during RDW showed that the participant’s average gaze velocity,

number of blinks, and number of saccades were all significantly correlated with the RDW gain

or time spent being redirected. We used average gaze velocity as a proxy for gaze stability since

participants were not tasked with fixating on any target in particular, so gaze stability with respect

to a visual target could not be measured.

As the RDW gain increased (the same physical rotation yielded a larger virtual rotation),

we found that participants had higher average gaze velocity. This make sense when we consider

the rotation task and how gaze behavior works during head and body rotations. In healthy people,

nystagmus is induced by body or head rotations as a mechanism for maintaining a stable view of

the observer’s surroundings. Optokinetic nystagmus occurs when the observer perceives a large

moving field during rotation (as in the photopic condition of our experiment), while vestibular

nystagmus occurs during rotations even in darkness [1]. Gaze position profiles during nystagmus

are characterized by a “saw tooth” shape as the eye slowly drifts in the direction opposite to the
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head rotation and then quickly jumps back in the direction of rotation. This pattern can be seen in

one user’s data in Figure 7.6. The frequency of nystagmus is a function of the speed of the head

rotation and/or the perceived visual field motion. Therefore, as the rotation gain increases, the

speed of the rotation of the virtual environment increases, which creates more nystagmus-induced

saccades that raise the average gaze velocity of the trial. That is, the larger the redirection gain,

the faster the virtual world rotates around the user, which triggers more saccades that increase the

average gaze velocity for each trial.

Interestingly, we found a negative correlation between trial duration and gaze velocity

(Subsection 7.4.4). A closer inspection of the data revealed two patterns that we believe explain

this negative correlation. First, as the participant reaches the end of a trial, their rotation velocity

decreases as they try to avoid turning beyond 90◦ in the VE (see the plateau towards the end of

the trial time in the orange curves in Figure 7.5 (right column) and Figure 7.7). As participants

slow down their body rotation to complete the trial, their gaze velocity also decreases (see the tail

of the blue curve in Figure 7.7) due to the decreased scene motion (fewer nystagmus movements

and more smooth vestibulo–ocular reflex movements). We found that longer trials tend to have

longer gaze velocity tails as the participants made small adjustments to their virtual heading

in order to complete the trial. The second factor that we believe contributes to the negative

correlation between trial duration and gaze velocity is that of previously-documented slow and

fast compensatory phases of eye movements during vestibular stimulation [1, 203]. When a

person’s head motion transitions from still to rotating, there is an initial step change in head

rotation velocity. This sudden movement initiates ocular nystagmus that alternates between slow

and fast phases: gaze velocity quickly reaches a peak and then slowly decreases exponentially

and approaches 0◦/s [203]. Indeed, this is the pattern seen in the gaze velocity curve (blue)
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in Figure 7.7—gaze velocity starts off slow (0 − 0.4 s), quickly peaks to a maximal value

(0.4 − 0.6 s) shortly after the user begins turning, and is followed by periodic, smaller spikes in

gaze velocity (0.6 − 2.5 s) which gradually approach 0◦/s (2.5 − 4.5 s). Thus, as trial duration

increases, it is logical that the participant’s average gaze velocity decreases as their gaze velocity

profile decreases exponentially.

We found a positive correlation between gain and blink and saccade frequency, which may

indicate an increase in simulator sickness symptoms as users spent more time in the experiment

[15, 20, 50, 77]. Finally, gaze velocity and blink frequency were correlated with time spent being

redirected in VR (trial number) and trial duration. However, these correlations were very small,

so they may not be useful signals for users’ perception of RDW gains.

7.5.3 Postural Data

In our experiment, we found that participants’ postural stability was significantly correlated

with the strength of redirection gain applied. The postural instability theory of motion sickness

proposes that postural instability is the main cause of motion sickness [160]. Stoffogen et al.

showed that postural instability (i.e., increased postural sway) is associated with symptoms of

motion sickness [189]. This finding is in line with our result, which showed that as the redirection

gain increased (and thus, the user’s surroundings become more visually unstable due to additional

rotations), participants’ postural sway also increased. Stoffogen et al. found that postural sway

preceding motion sickness ranged, on average, on the order of 10 cm or less [189], and we found

that as the gain increases by one unit, postural sway increases on average by 6.080 cm. This adds

support to the notion that postural sway can be used as a signal for feelings of discomfort for

users during redirection.
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7.5.4 Further Considerations

Although our results showed some correlations between RDW system factors and users’

physiological signals, our study design limits the amount of correlations we were able to study.

We chose to use the method of constant stimuli (MCS) for our experiment because this topic is

somewhat understudied, so we preferred to have a uniform sampling of the RDW gain parameter

space. This allowed us to study equally how physiological signals varied across the parameter

space, as opposed to an adaptive sampling paradigm which will be biased near to the participant’s

detection threshold. Since MCS applies gains in a random order, we were unable to test how

physiological signals behave near a user’s detection threshold since this threshold value is only

known after the experiment once we fit a psychometric curve. As such, we were only able to test

for general correlations between RDW gain and physiological signals.

Furthermore, we chose a randomized order of gains to mitigate learning effects and to

minimize the chance that participants feel debilitating levels of simulator sickness. As a result,

it is possible that our data do not capture some patterns in users’ physiological data that only

manifest after long, continuous exposure to redirection. With a different study design (such as

adaptive staircase or continuous psychophysics), one may be able to better study how physiological

signals behave near the detection threshold and during uninterrupted periods of walking.

Prior work has shown differences in detection thresholds depending on gender [138, 230],

but we did not see any such differences in our work. It is not clear why this is the case. Finally, we

note that while we did see significant correlations, the effects were sometimes small; we believe

this is due to the short trial durations and because most of the trials applied a gain that was not

near the participant’s detection threshold.
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In this work, we only measured the correlation between redirection strength and gaze/posture

data. This should not be mistaken as a correlation between user comfort and physiological

data. Since we did not continually record any measure of user comfort during the course of

the experiment (e.g. after every trial), we cannot claim that there is a direct correlation between

physiological signal patterns and user comfort. Since the strength (and perceptibility) of RDW

gains is related to users’ feelings of comfort [161], it is likely such these correlations exist.

7.6 Conclusions, Limitations, & Future Work

In this work, we investigated correlations between physiological signals (gaze and posture)

and RDW gains. We also studied the impact of photopic and mesopic lighting conditions on

users’ sensitivity to RDW. In line with our first hypothesis, we found that postural stability, gaze

velocity, blink and saccade frequency were significantly correlated with various factors of the

VR environment during redirection (RDW gain, trial duration, and trial number). Contrary to our

second hypothesis, our results showed no significant effect of luminance on RDW thresholds.

Our results contribute to the growing body of knowledge on RDW thresholds and factors that

affect it, as well as potential signals for RDW tolerance in the form of physiological signals. Our

work has some limitations. It is difficult to know exactly which patterns in the physiological data

were due to RDW or due to symptoms of simulator sickness that participants will naturally feel

as experiment progresses. However, it is common for RDW to increase users’ sickness levels, so

in practice it may not be important to disentangle the effects of RDW and simulator sickness on

physiological signal patterns. Additionally, our participant pool was biased toward young people.

Finally, the physiological signals we recorded and analyzed are only a subset of the potentially-

available signals that one could record during VR. We limited our study to posture and gaze data
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since these are biosignals that are easily obtainable in most modern HMDs, but other signals

such as heart rate or skin conductance may be useful correlates as well. Future work should

study correlations between RDW parameters and other signals such as galvanic skin response,

pupilometry, and heart rate.
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Figure 7.3: Psychometric curves fit to participants’ pooled response data for the photopic (yellow)
and mesopic (blue) conditions. The graph shows the average probability of responding “greater”
to the post-trial question “Was the virtual movement smaller or greater than the physical
movement?”. The yellow- and blue-shaded regions indicate the estimated range of rotation gains
that are usually imperceptible to users (i.e., the 25% and 75% detection thresholds). Error bars
for each data point denote the standard error. The pooled detection thresholds for photopic and
mesopic conditions were similar to values found in prior work that used photopic stimuli, and
there were no significant differences between the two conditions. The detection threshold gains
shown here are not exactly the same as the average values shown in Table 7.1 since we computed
the curves in this plot by fitting a psychometric curve to the pooled participant responses, while
Table 7.1 computes the average of the curves fit to individual participants’ responses for each
conditions.
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Figure 7.4: A scatter plot of users’ SS scores after the light (photopic) and dark (mesopic) blocks
of our experiment. In general, participants exhibited SS levels that are typical of RDW detection
threshold experiments. The data belonging to the outlier male participant with the highest SS
scores did not show any anomalous patterns, so their data are included in our analyses.
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Gain = 1.4

Gain = 0.3

Figure 7.5: Examples of one participant’s posture data for two different trials (each row
corresponds to one trial). The left column shows the participant’s head position projected onto
the ground plane (black curve), with the centroid of their positions at the origin (red dot). For
each trajectory point sampled, we compute a proxy for postural sway as the distance between
the centroid and the sampled head position (i.e., the distance from each point to the origin). The
right column shows the participant’s postural sway (purple curve) and total amount rotated in
the physical environment (orange curve) across the duration of the trial. The points along the
trajectory curves and postural sway curves are colored according to the time in the trial (purple
indicates the beginning of the trial, yellow indicates the end of the trial). These plots show
that as the gain increases, participants’ postural sway also increases—a correlation which was
statistically significant (Subsection 7.4.3).
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Saccade

Figure 7.6: An example of one participant’s horizontal eye position (red curve, in UV coordinates
of the rendered image) during one trial. Green indicate saccades (gaze velocity above 30◦), which
are also identifiable as a very steep slope in the red curve, denoting the eye’s horizontal position.
The data help to confirm that our participants’ gaze behavior was free of abnormalities since this
plot shows that gaze behavior was characterized by typical nystagmus responses that are expected
in healthy observers during head rotation [1].
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Figure 7.7: A graph showing a user’s gaze velocity (blue) compared to the total amount they
have rotated their body during one trial (orange). The gaze velocity curve is characterized by
multiple saccades that arise from vestibular nystagmus and the optokinetic reflex. The body
rotation curve increases from 0◦ to ∼95◦ over the course of the trial. The grey shaded region is
the range 85◦− 95◦ (the trial ended if the orange curve lies within this region for 1 s). As the trial
progresses, the user’s gaze velocity gradually decreases to 0◦ as they wait for the trial to complete
after rotating a sufficient amount.
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Conclusion, Limitations, and Future Work
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Chapter 8: Conclusion, Limitations, & Future Work

8.1 Summary of Results

The work presented in this dissertation details new methods for understanding how people

locomote naturally in VEs and new locomotion interfaces that enable people to explore large VEs

with fewer collisions on average. The individual contributions of the work can be summarized as

follows.

Alignment-based Redirection Controller [231]: In this project, we made the key observation

that locomotion in VR is a problem primarily when the local structure of the physical and virtual

environments are different. Building on this observation, we developed a redirected walking

algorithm that steers the user in the physical space to minimize the differences in proximity to

objects between the physical and virtual environments, yielding significantly fewer collisions

on average. We also introduced a new metric, Complexity Ratio, that measures the relative

complexity of a given physical and virtual environment.

Visibility-based Redirection Controller [232]: In this project, we used techniques from robot

motion planning to formalize the redirection problem and develop a new redirection algorithm

that achieves fewer collisions on average by leveraging visibility polygons to represent the structure

of the user’s immediate surroundings.

Distractor-based Redirection Controller [235]: In this project, we use motion planning techniques

to design an algorithm that determines how to control the behavior of distractors in a virtual
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experience such that the user travels on a collision-free path when interacting with the distractor.

We showed that if certain information about the physical space is available to the system and the

distractors fulfill certain constraints, it is possible to guarantee that the user will travel along a

collision-free trajectory when engaging with the distractor in VR.

Environment Compatibility Metric [233]: We used visibility polygons and uniform random

sampling techniques to describe the structure of a pair of environments on a local and a global

scale. We then compare the shapes of visibility polygons between the two environments to

quantify how easily navigable the two environments will be when they are used as a physical

and virtual environment for a virtual experience.

Physiological Signals of Redirection Sensitivity [236]: In this project, we measured how sensitivity

to redirected walking rotation gains changes as a function of photopic and mesopic light levels,

and we found no significant differences in sensitivity based on light level. We also measured to

what extent a user’s gaze and postural data are correlated with the strength of rotation gains. Our

results showed that as the rotation gain increases, the user’s gaze stability and postural stability

decreases.

8.2 Limitations

Our work is not without its limitations, however. First, some of the redirection algorithms

presented in this thesis was evaluated only using simulations [231, 232]. Although there is

recent work that points to the validity of simulation-based evaluation for redirected walking

algorithms [10], there are still many subtle dynamics of human gait that are currently missing

with our simulation frameworks. In addition to lacking the ability to simulate subtleties of

human gait, our simulation framework also lacks the ability to separately and faithfully model
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head and eye rotations (that is, we assume the user always looks directly ahead in the direction

they are moving). Relatedly, another limitation of our work is that we did not extensively test

the robustness of our algorithms in different environment layouts. Furthermore, the alignment

metrics we used in our algorithms [231, 232] are quite simple and it is likely that more expressive

similarity metrics would yield better results. Finally, our distractor-based algorithm [235] was

only evaluated using one implementation of our framework, so the efficacy of our method with

different distractor designs is not well-understood.

Our environment incompatibility metric [233] also has limitations. First, our method

slow since it is essentially an exhaustive comparison of all pairs of sampled points in both

environments, which is a naiv̈e solution. It is possible that there exist more clever ways to select

which points to compare to find the most-compatible pair of physical and virtual points, similar

to importance sampling in ray tracing [216, 217].

Our work on physiological signals for redirection sensitivity also has limitations [236].

First, we only studied the relationship between physiological signals and rotation gains in a

traditional psychophysical experiment, despite the existence of several other redirection gains

[112, 187, 240]. Additionally, our ability to separate the effects of gain and simulator sickness

on gaze and posture data is very limited, since we did not collect any continuous measure of

users’ simulator sickness symptoms during the course of the experiment (i.e., we only collected

sickness data at the end of the experiment). Thus, it is possible that some of the observed patterns

in gaze and posture data were caused by symptoms of simulator sickness and not directly because

of the rotation gains applied.
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8.3 Future Work

In this dissertation, we developed methods for analyzing and enabling collision-free natural

walking in large virtual environments. Although our work has made contributions towards

improving the viability of natural walking in VR, there are still many avenues for future work.

Future work should study the viability of combining multiple different techniques for

natural walking. We studied alignment-based methods and distractor-based methods in this

thesis. However, we know that different methods for natural walking in VR, such as redirection

[158], dynamically-changing virtual spaces [215, 238], and distractors [149], are optimally effective

in different environment configurations and virtual applications. For example, alignment-based

methods work best when the physical and virtual environments have areas of locally-similar

structure, while dynamically-changing virtual spaces are more amenable to unpredictable, dynamic

physical environments. Algorithms that are able to combine multiple different natural walking

interfaces based on the environment configurations will likely be more effective since they will

be able to utilize the optimal technique based on the user’s current situation. Additionally, future

work should study different methods for manipulating distractor behavior to guide the user to

safe physical locations. In our implementation [236], users very reliably interacted with the

distractors since they were a core aspect of the virtual experience. However, one could imagine

different kinds of distractors that vary in their ability to reliably capture the user’s attention and

elicit a specific behavior from the user. A locomotion interface that can make use of multiple

types of distractors with varying levels of attentional capture would likely yield a more immersive

experience for users.

There are many avenues for future work related to our environment incompatibility metric,
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too. First, future work should develop new data-driven metrics that use machine learning to learn

an environment compatibility metric based on large amounts of locomotion data. Computation of

our ENI metric is quite slow, so a learned model that only needs to be trained once and can then be

queried quickly for new, unseen environment pairs would be beneficial. A large-scale locomotion

dataset would also be useful for fast evaluation of locomotion interfaces, too. Future work

should also investigate the possibility of using additional factors besides environment geometry

to estimate navigability (e.g., user task, user trajectory, environment complexity).

Additionally, future work should develop methods for measuring a user’s tolerance to

redirection that directly measure the amount of visual motion perceived by the user (e.g. via

optic flow [163] or motion energy models [2]). In our experiment, we measured correlations

between rotation gain strength and physiological signals. However, parameterizing motion by a

rotation gain is not very descriptive of the motion perceived by the user since the perceived visual

motion will depend on not only the gain but also the user’s rotation speed as well as the structure

(i.e., depth) and appearance (i.e., textures) of their virtual surroundings. Therefore, understanding

a more direct relationship between physiological signals and perceived motion (parameterized by

optic flow or a motion energy model) would yield an improved understanding of how sensitivity

to redirection changes as a function of perceived motion in any virtual environment, allowing for

greater generalizability and reliability of measures of redirection thresholds. Finally, future work

on physiology for redirection sensitivity should test the viability of using physiological data as a

real-time proxy for comfort and using the observed patterns in gaze and posture data to modulate

the strength of redirection gains during the user’s virtual experience without interrupting them

(as is currently done in psychophysical threshold paradigms).
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