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Figure 1: Emotive Gaits for Virtual Agents (VAs) Generated Using Affect-Based Autoregression: Samples of the emotive
gaits for VAs generated by our learning-based algorithm in an AR environment. The top row shows stick figures and the bottom row
shows human models corresponding to the VAs. The VAs can exhibit different emotions based on their gaits, as indicated at the top
of each column, while walking along user-defined trajectories at interactive rates.

ABSTRACT

We present a novel autoregression network to generate virtual agents
that convey various emotions through their walking styles or gaits.
Given the 3D pose sequences of a gait, our network extracts perti-
nent movement features and affective features from the gait. We use
these features to synthesize subsequent gaits such that the virtual
agents can express and transition between emotions represented as
combinations of happy, sad, angry, and neutral. We incorporate
multiple regularizations in the training of our network to simultane-
ously enforce plausible movements and noticeable emotions on the
virtual agents. We also integrate our approach with an AR environ-
ment using a Microsoft HoloLens and can generate emotive gaits at
interactive rates to increase the social presence. We evaluate how
human observers perceive both the naturalness and the emotions
from the generated gaits of the virtual agents in a web-based study.
Our results indicate around 89% of the users found the naturalness of
the gaits satisfactory on a five-point Likert scale, and the emotions
they perceived from the virtual agents are statistically similar to
the intended emotions of the virtual agents. We also use our net-
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work to augment existing gait datasets with emotive gaits and will
release this augmented dataset for future research in emotion predic-
tion and emotive gait synthesis. Our project website is available at
https://gamma.umd.edu/gen_emotive_gaits/.

Index Terms: Human-centered computing—Human computer
interaction (HCI)—Interaction paradigms—Mixed / augmented real-
ity; Computing methodologies—Machine learning—Machine learn-
ing approaches—Neural networks

1 INTRODUCTION

The generation of intelligent virtual agents (IVAs) is important for
many virtual and augmented reality systems. The virtual agents
correspond to embodied digital characters that are often used as
avatars to represent the users and may look like real-world characters.
Recent work in photorealistic rendering and capturing technologies
has resulted in generating agents or avatars that closely resemble the
humans and are widely used in VR and AR systems [2, 21].

Many applications, including virtual assistance, training, and AI
chatbots, need a computationally created virtual agent or an avatar
that not only looks like a real human but also behaves like one and
conveys emotions [35, 60]. Perception of such emotional expressive-
ness is commonly described as the ability of an observer to make
decisions on a subject’s emotional state by observing certain patterns
or cues physically expressed by the subject [22, 58, 66]. These phys-
ical cues are expressed through various “modalities,” including, but
not limited to, facial expressions [17], tones of voice [19], gestures,
body expressions [15], walking styles or “gaits” [47], etc. Emo-
tions coming from such different modalities [45], in conjunction
with the different underlying situational and social contexts [32, 46],
have a significant impact on our everyday lives. They influence our
social interactions and relationships and provide key insights into
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developing healthy social environments [29]. Similarly, emotions
can greatly impact the perception of these virtual agents in terms
of social presence and how the users behave when interacting with
them in AR and VR environments [34, 48, 60].

In this paper, we mainly focus on designing virtual agents that
are capable of expressing different emotions through their gaits,
i.e. virtual agents with emotive gaits. When perceiving emotions
from gaits, humans generally look at physical expressions such as
arm swing, stride length, upper-body posture, head jerk, etc. [13],
collectively referred to as affective features. In fact, studies have
shown that observers often rely on such cues from gaits and other
body expressions, especially when there are mismatches with cues
from more common modalities such as facial expressions [4]. As a
result, it is useful to generate virtual agents with emotive gaits for
gaming and social VR [52, 71], crowd simulation, and path plan-
ning [6, 50], anomaly detection [63], therapy, rehabilitation [65],
and psychology and neurobiology [5, 51, 68]. Studies indicate that
virtual agents expressing various moods, emotions, and behaviors
elicit more empathy and engagement from humans interacting with
them [64]. However, automated methods to generate gaits that ex-
press certain emotions are challenging to design and implement.
This is hard not only because of the complexity of modeling periodic
and aperiodic motions constituting different gaits, but also because
of the individual, social, and cultural diversities in terms of both
expressing and perceiving emotions [3, 20]. These challenges are
further exacerbated by the difficulty of collecting and annotating
large benchmark datasets of gaits with appropriate emotion labels.
Datasets collected in controlled experimental settings are often ex-
aggerated and not always generalizable. On the other hand, datasets
collected in the wild often suffer from the long-tail nature of the
distribution of emotions, with most emotion being close to neutral.
Therefore, there is a need to develop automated methods to synthe-
size emotive gaits for virtual agents that can augment the existing
datasets.

There is an extensive work in AR/VR, computer graphics, vision
and related areas such as biomechanics, on automated techniques
for generating human characters capable of performing locomotion
activities, including walking, running, leaping, and more [24, 25, 57,
60–62, 75]. These methods make use of movement features such as
joint rotations, joint velocities, frequency of foot contact with the
ground, and walking phases, and combine them with structural and
kinematic constraints of the human body and learning techniques.
While these methods can generate plausible locomotion, walking
patterns, and actions, it is non-trivial to add emotional components
to these techniques or use them to generate emotive gaits.
Main Results: We present a novel autoregression method that takes
as input 3D pose sequences of the gaits of virtual agents (VAs) and
efficiently combines pose affective features such as arm swings,
head jerks, body posture and more, and movement features such
as stepping speed, root height and more, to generate future pose
sequences of emotive gaits. We present a network architecture
that incorporates both spatial information and spectral information
available from the input pose sequences and enables the VAs to both
express and transition smoothly between different emotions while
walking. We construct VAs as both stick figures and human models
using our generated emotive gaits and integrate these VAs in an AR
environment using the Microsoft HoloLens (Figure 1). Our learning-
based algorithm takes a few milliseconds to generate an emotive
gait for each agent on a pair of NVIDIA GeForce GTX 1080Ti
GPUs. Our VAs, overlayed onto a real-world room, are rendered at
interactive rates to increase their sense of social presence. The novel
components of our work include:

• An autoregression network that takes in 3D pose sequences
of a VA’s gait, the desired future trajectory, and the desired
emotions. It outputs the VA’s gait expressing the given emotion
while following the given trajectory.

• A novel training method combining movement features and
psychologically-motivated affective features into a unified net-
work to generate plausible, emotionally-expressive gaits.

• A transition scheme for the characters to smoothly transition

between gaits expressing different emotions.
• An elaborate web-based user study to evaluate the benefits

of the emotive gaits generated by our algorithm. We asked
the observers to report the emotions they perceived from the
generated gaits, as well as the Likert scale (LS) values of pose
affective features that contributed to their perception. Based
on the study, we conclude that

– There is strong statistical evidence to suggest that the
observers’ perceived emotions are statistically similar to
the corresponding intended emotions of our VAs, thereby
showing that the generated gaits are emotive,

– The observers consistently reported different LS val-
ues of the pose affective features for different emotions,
making our choice of pose affective features statistically
significant for perceiving emotional expressiveness.

• An augmented dataset, “Synthesized Emotive Gait,” which
provides emotive gaits generated by our method to facilitate
more research in this area.

2 RELATED WORK

In this section, we briefly survey prior work on representing emo-
tions, perceiving emotions from gaits, generating and styling gaits
for virtual agents, and making virtual agents emotionally expressive.

2.1 Modeling and Perceiving Emotions from Gaits
Various models for representing emotions have been studied in psy-
chology, and the Valence-Arousal-Dominance (VAD) model [44] is
one of the most popular. The VAD model considers a continuous
3D space, spanned by the valence, arousal, and dominance axes.
Valence is a measure of the pleasantness of emotion, arousal is a
measure of the intensity of expression, and dominance is the mea-
sure of how much emotion makes one feel in control. Many methods
use a simpler model that is a linear combination of discrete emotions
and represents a subset of VAD.

Humans perceive these emotions by observing physical features
or cues expressed via different modalities. Studies conducted by
Montepare et al. [47] concluded that observers were able to per-
ceive emotions by only looking at the subjects’ gaits. Subsequently,
Roether et al. [66] and Gross et al. [22] identified that observers
were most consistent when looking at gaits expressing emotions that
varied on the arousal axis. Follow-up studies looked more closely
at the gait-based expressions observers focused on for distinguish-
ing between different perceived emotions and identified features
including arm swing, gait velocity, upper body posture, and head
jerk [9, 10, 13, 28]. In contrast to prior approaches, our goal is to use
affective features and movement features to synthesize gaits with
emotions varying on the arousal axis.

2.2 Emotional Expressiveness in Virtual Agents
Prior works have commonly explored the generation of emotion-
ally expressive virtual agents via modalities such as verbal com-
munication [11, 70], face movements [18], body gestures [27], and
gaits [60–62]. These generation techniques have had significant
performance benefits when combined with concepts from affective
computing. For example, Pelczer et al. [55] designed a strategy
to evaluate the accuracy of identifying the modalities of emotional
expressiveness in a virtual agent. McHugh et al. [43] explored how
different body postures influenced the emotion perception of indi-
vidual agents in crowds. Clavel et al. [12] studied the combined
effect of faces and postures of virtual agents on emotion perception,
and Liebold et al. [39] generalized this to include combinations of
other modalities such as verbal cues and faces. More recently, Rand-
havane et al. [61] developed an empirical mapping between gait
and gaze features and different emotions to generate emotionally
expressive virtual agents. Our approach to generating emotive gaits
is complementary to these methods and can be combined with them.

2.3 Generating and Styling Gaits for Virtual Agents
There has been extensive prior work in computer graphics and
AR/VR for generating and styling gaits for virtual agents. Early



Figure 2: Our Affective features: The top left figure shows our pose
graph as a directed tree, with the joints numbered 0 through 20. We
use 18 affective features, counting 11 joint angles, 4 distance ratios,
and 3 area ratios. The joint angles are labeled A1 through A11, and
marked with red arcs on the last three figures in the top row. The
leftmost figure on the bottom row shows the distances we use to
compute the distance ratios. We use the ratios D1

D2
, D3

D4
, D6

D5
, and D7

D5
.

The last three figures on the bottom row show the triangles we use to
compute area ratios. We use the ratios T1

T2
, T3

T4
, T5

T6
. These features are

used by our network to generate emotive gaits of the virtual agents.

approaches used patch-based building blocks [36], kernel-based ap-
proaches [73], or modeled the motion paths as directed graphs [33] to
generate natural-looking movement styles. Recent approaches have
leveraged large-scale datasets using deep learning-based approaches
to generate diverse movement styles. These approaches include train-
ing a network on specific joint trajectories [25, 67], using periodic
phase-functions, which are either modeled geometrically [24] or
learned with a neural network [72], to represent walking cycles, and
exploiting transfer to reduce over-dependency on data [42]. Other
approaches use deep reinforcement learning to learn control poli-
cies for virtual characters exhibiting different movement styles and
actions [37, 53, 56, 57]. Yet other approaches model motion pre-
diction as an autoregression problem, and have utilized recurrent
networks [54] and convolutional networks [38] on motion captures
pose sequences, and generative adversarial learning on dynamic
pose graphs [14], to predict future motions. While these methods are
not built for motion styling, their key concepts have been useful in
developing many motion-based style transfer methods [16, 30, 74].

In contrast with these methods, we combine walking phases and
gait-based affective features in an autoregression network to estimate
future joint rotations and movement features for different emotive
gaits. Instead of a DRL-based control policy, our network learns a
feature-based latent representation space and maps from that space
to emotion-styled predicted poses. Furthermore, our emotion styles
are sampled from a continuous space of emotions. Therefore, they
need to be modeled differently from conventional styles, which can
be viewed as one-hot labels in a discrete space. We also demonstrate
that our approach can generate gaits expressing a continuous range
of emotions, for AR applications.

3 GENERATING EMOTIVE GAITS

In this section, we present our approach for generating emotive
gaits of VAs. The inputs to our algorithm are the sample gaits of
a VA provided as motion capture data, the desired trajectory, and
the desired emotion. Our goal is to generate subsequent predictions
of the gait that follow the desired trajectory and express the desired
emotion. Since our approach depends only on the input motion-
captured gait samples and the desired trajectories, we can adapt to
VAs with different skeletal dimensions, different natural walking
styles, as well as to different AR environments.

3.1 Emotion Model
We choose to use an emotion model consisting of linear combina-
tions of categorical emotions varying primarily on the arousal axis
(happy, angry, sad, etc.). Although this model admittedly spans
a smaller set of emotions than the VAD model, prior works have
reported that categorical emotion terms are more easily understood
by non-experts, leading to the availability of more labeled data and
the generation of a diverse range of emotions [9, 59].

3.2 Construction of the Generative Components
We present various components used by our network to perform gen-
eration: input gaits, emotions, pose affective features, and trajectory
features.

3.2.1 Gaits

We denote a gait G as G =

{
X t

j =
[
xt

j,y
t
j,z

t
j

]>
∈ R3

}J−1,T−1

j=0,t=0
,

where
[
xt

j,y
t
j,z

t
j

]>
denotes the 3D positions of joint j at time step t

in the world frame, J denotes the total number of joints, and T de-
notes the total number of input time steps. The input to our network
are joint rotations extracted from the gait G, and control signals
obtained from the gait, its trajectory, and the associated emotions.

At each time step t, we model the pose graph of the input gait as
a directed tree, as shown in Figure 2. The root joint in the pose is the
root node of the tree and the two toes, the two hand indices, and the
head, are the leaf nodes the tree. All edges in the tree are directed
from the root node to the leaf nodes. We denote the parent of a joint
j as P( j). In our construction, each joint has a unique parent, except
the root joint, which has no parent. We therefore assign P( j) =−1
for the root joint. For each joint j at each time step t, we consider the
rotation Rt

j ∈ SO(3) that transforms the joint from its offset o j ∈R3

— a pre-defined initial position relative to its parent P( j) — to its
position at time step t relative to its parent. That is, we consider
the rotation Rt

j such that the global position X t
j of the joint j at time

step t is given by X t
j = Rt

jo j +X t
P( j). For the root joint, we consider

o0 = 0 and obtain its position directly from the gait G.
Following the approach taken by Pavllo et al. [54], we represent

these rotations as unit quaternions or versors qt
j ∈H⊂R4, where H

denotes the space of versors. We have chosen to represent rotations
as versors, as they are free of the gimbal-lock problem. We enforce
the additional unit norm constraints for these versors when training
our network. Thus, for each gait, our input rotations are given as{

qt =
[
qt

1; . . . ;qt
J−1
]
∈HJ−1

}T−1

t=0
.

We do not consider qt
0 for the root joint denoted by 0 as part of the

input data, since o0 = 0.

3.2.2 Emotions
We note that the modeling of emotions is fundamentally different
from modeling conventional motion styles such as strutting, zombie-
like, etc. These conventional styles can be considered “discrete”,
such that clips or images can be categorized as belonging to a particu-
lar style. Emotions, on the other hand, span a continuous space [44],
such that different motion clips can have different intensities of the
same emotion. For example, a somewhat happy gait is expressed
differently from one that is extremely happy. For conventional styles,
it is generally not needed to account for such intensities, e.g., slightly
strutting vs. heavily strutting. To account for this continuous na-
ture, we assume each gait in the input dataset is associated with an
emotion vector whose components are the C categorical emotion
terms, i.e., each emotion m is a vector in RC. In practice, the value
of each element l in an emotion vector m is the relative count of the
number of annotators who labeled the corresponding gait with the



Figure 3: Movement features: We show the root height from the
ground ht , the root speed st , and the stepping phase θ t . The root
speed is the distance travelled between time steps t and t−1. The
stepping phase θ t = 0 when the left foot touches the ground at time
step t, θ t+∆t = π when the right foot touches the ground at time step
t +∆t, and θ t+∆t+τ = 0 when the left foot touches the ground again.
We fill in the values for θ t between these time steps using linear
interpolation. We use these features in our autoregression network.

categorical emotion term l. Also, for training, and due to the prac-
tical limitations of separately annotating the emotion at each time
step, we repeat the same annotated emotion m in all the time steps.
In other words, we assume the emotion vector remains unchanged
throughout the corresponding input gait.

3.2.3 Pose Affective Features
Prior studies in psychology have shown that various physically-based
pose features observed per-frame during a gait, better known as af-
fective features, aid the identification of perceived emotions from
gaits [13, 28]. Roether et al. [66] identified such a set of necessary
pose affective features for human perception. To make these features
suitable for machine perception, prior works such as [9, 10, 59] have
come up with necessary sets of scale-independent pose affective
features that can be computed geometrically. Scale independence
is an important factor in such intra-frame affective features, as ob-
servers can identify emotions irrespective of the distance from or the
physical stature of the subject. In our work, we use the following
three types of scale-independent pose affective features to encode
the relevant emotion information:

Angles. We use the angles subtended by a pair of joints at a
third joint. For example, the angle between the two shoulder joints
at the neck measures slouching, an indicator of valence and arousal.

Distance ratios. We use the ratios of the distances between two
pairs of joints. For example, the ratio of the distance between the
two feet joints to the distance between the neck and the root joints
measures the stride, which can indicate arousal and dominance.

Area ratios. We use the ratios of areas formed by two triplets of
joints. These can be considered as amalgamations of the angle- and
the distance ratio-based features and they can be used to supplement
observations from both these types of features. For example, the
ratio of the area of the triangle formed by the hand indices and the
neck to the area of the triangle formed by the toes at the root can be
used to simultaneously measure arm swings and strides, which can
collectively indicate the valence, arousal, and dominance.

We use 11 angles, four distance ratios and three area ratios for a
total of 18 pose affective features, which we collectively denote as
at ∈ R18 at each time step t. We list all these pose affective features
in Figure 2, and direct the interested reader to [10] for a detailed
analysis on choosing these features.

3.2.4 Movement Features
We use a trajectory followed throughout a gait to extract pertinent
movement information for our network to generate gaits following
given trajectories. We use two kinds of movement features: root
joint features and stepping features. The former consists of root
height deviation, root speed (a low-pass filtered component), and
root orientation difference trajectory curvature. The latter consists
of stepping phase and foot-step frequency, which are obtained from
the trajectory. Figure 3 illustrates some of these features. Apart
from movement information, the root joint features and the foot-step

frequency also provide inter-frame or dynamic affective information
for emotional expressions. We define these features below.

Root joint features The root height deviation (ht) is the signed
difference of the height of the root joint from its mean height from
the ground plane across the time steps. Subjects expressing emotions
with higher arousal tend to have their upper bodies more upright,
thus keeping the root height above the mean more often than subjects
expressing emotions with lower arousal. In our case, the XZ plane
is the ground plane, making the root height ht = yt

0.
The root speed (st) is the magnitude of the difference of the

2D position of the root joint, as projected on the ground plane,
between the current step t and the previous step t−1. Root speed
helps indicate the arousal as well, with higher arousal tending to
result in faster speeds more often. We represent the root speed as

st =

∥∥∥∥[xt
0,z

t
0
]>−[xt−1

0 ,zt−1
0

]>∥∥∥∥. With root speed, we also use its

loss-pass filtered component s̄t . This reduces the high-frequency
noise in the root speed, which is especially useful when the network
learns on trajectories with high curvatures.

The root orientation difference (δ t) is the angular difference
between the root orientation αt w.r.t. the world coordinates and
the tangent τt to the 2D root joint positions

[
xt

0,z
t
0
]> on the ground

plane, w.r.t. the world coordinates at each time step t. We express the

tangent using forward difference, i.e., τt =
[
xt

0,z
t
0
]>−[xt−1

0 ,zt−1
0

]>
.

Then we have δ t = dang

(
[sinαt ,cosαt ]> ,τt/‖τt‖

)
, where dang

denotes the unsigned smaller angle between the unit vectors.

Stepping features The trajectory curvature (κt) is the norm
of the second-order derivative of the 2D positions of the root joint
on the ground plane, or equivalently, the derivative of the root joint
tangents τt on the ground plane. We compute this using forward
difference as well, i.e. κt =

∥∥τt − τt−1
∥∥.

The stepping phase (θ) represents the phases of the feet between
the time steps where they touch the ground. We consider a half-
period to be the time from the instant of one foot touching the
ground, to the subsequent instant when the other foot touches the
ground. Given the half-periods, we define the stepping phase θ t

at each time step t as follows. We assign a phase θ t = 0 when the
left foot touches the ground and a phase θ t = π when the right foot
touches the ground, filling in the intermediate phases through linear
interpolation.

The foot-step frequency (ωt) is the angular velocity of the foot
joints. Apart from generating realistic walk cycles (the motion
between ipsilateral footsteps), this feature also supplements the root
speed information to indicate the arousal in the emotions expressed
by the gait. We compute the foot-step frequency at each time step t
as the difference between the phase at that time step and the previous
time step t−1, i.e. ωt = θ t −θ t−1.

4 AUTOREGRESSION

Given a sequence of values with some information content, the
overall goal of autoregression is to predict subsequent values in
the sequence to maintain a similar information content [40]. In
our work, we use an autoregression network to encode gaits with
given emotions and predict subsequent gaits while maintaining the
same emotions. Our network consists of an encoder followed by a
predictor. The encoder takes in the joint positions and rotations of
the input gait for a number of time steps and extracts pose affective
features and root joint features from the input gaits. Next, it learns
the encoding functions to jointly map these extracted features, the
corresponding input emotions, and the stepping features (such as
curvature and foot-step frequency) to latent representations.

The predictor learns to compute the inverse mapping from the
latent representations to the necessary affective and trajectory fea-
tures and, by extension, the joint positions, and rotations, in the
subsequent time steps.



Figure 4: Our autoregression network for emotive gaits: Our network takes in the joint rotations, input emotions as vectors consisting of
probabilities for happy, sad, angry, and neutral, pose affective features, and movement features and jointly maps them to a latent representation
space through the encoder. The predictor then takes in the latent representations and predicts gaits for subsequent time steps that follow the input
trajectory while expressing the input emotions. The green boxes denote concatenation, and the cyan box at the end of the predictor denotes
normalization of the variables to versors.

We train the encoder and the predictor in tandem, by adding the
predictor’s output back to the encoder’s input and advancing the
temporal window of the encoder. We are able to achieve emotional
expressiveness by training our network with input gaits for different
emotions and forcing the network to learn to predict the correspond-
ing pose affective features in the prediction time steps from its latent
representations. We simultaneously enforce a robust constraint on
the network to adapt its trajectory features such that its predicted
movements are close to the corresponding movements in the ground
truth. This enables the network to take sharp turns and follow bends
in the trajectory without smoothing out feet movements. Our overall
approach is shown in Figure 4. We now elaborate on the operations
of the encoder and the predictor.

4.1 Encoder

In the encoder, we separately combine our emotion vectors m with
the pose affective features at , the stepping features consisting of
[sinθ t ,cosθ t ] and ωt , and the root joint features s̄t and κt , giving
us input vectors it1 = [at ,m]> ∈ R18+C and it2 =

[
sinθ t ,cosθ t ,ωt ,

s̄t ,κt ,m
]> ∈ R5+C.

We pass each of these inputs through a set of 3 fully con-
nected layers, respectively, collectively denoted as the functions
FCenc1

(
·,φFCenc1

)
: RT×(18+C) → RT×H1 and FCenc2

(
·,φFCenc2

)
:

RT×(5+C)→RT×H2 . Here, H1 and H2 denote the number of hidden
units in the last fully connected layer in FCenc1 and FCenc2 respec-
tively, and φFCenc1

and φFCenc2
denote the set of trainable parameters

in the two sets of fully connected layers, respectively.
We combine the outputs of these fully connected networks to

obtain intermediate representations γt , i.e. we have

γ
t =
[
FCenc1

(
i1,φFCenc1

)
;FCenc2

(
i2,φFCenc2

)]
(1)

where i1 =
[
i01, . . . , i

T−1
1

]>
and i2 =

[
i02, . . . , i

T−1
2

]>
.

We then append γt separately to our input joint rotations qt and
to the remaining root joint trajectory features, ht , st and δ t . We
pass the appended rotation data through a GRU to obtain the latent
representations q̃, i.e., we have

q̃ = GRUversors
(
[q;γ] ,φGRUversors

)
(2)

where
– q =

[
q0, . . . ,qT−1]>,

– γ =
[
i01, . . . ,γ

T−1]>,
– GRUversors : RT×(4(J−1)+H1+H2)→ RT×H3 ,

– H3 is the number of hidden units in the final layer of the GRU,
and

– φGRUversors denotes the trainable parameters in the GRU.
We also pass the appended root joint trajectory features through

a fully connected layer FCroot : RT×(3+H1+H2)→T×H4 , H4 being the
number of hidden units in the layer, to obtain the latent representa-
tions h̃, s̃, and δ̃ . That is, we have[

h̃, s̃, δ̃
]>

= FCroot
(
[h;s;δ ;γ] ,φFCroot

)
(3)

where
– h =

[
h0, . . . ,hT−1]>, s =

[
s0, . . . ,sT−1]>, δ =

[
δ 0, . . . ,δ T−1]>,

– φFCroot denotes the trainable parameters in the fully connected
layer.

4.2 Predictor
Our predictor takes in the latent representations of the joint rotations
and the root joint trajectory features from the encoder and learns to
predict the same for Tpred subsequent time steps such that the corre-
sponding generated gaits follow the input trajectory while expressing
the input emotion vectors. The predictor consists of a set of 2 fully
connected layers, denoted as FCversors : RT×H3 → RTpred×4(J−1) to
predict the joint rotations, and three separate fully connected layers,
FCh : RT×H4 → RTpred , FCs : RT×H4 → RTpred , and FCδ : RT×H4 →
RTpred to compute the respective root joint features. Thus, we have,

q̂ = FCversors
(
q̃,φFCversors

)
, (4)

ĥ = FCh
(
h̃,φFCh

)
, (5)

ŝ = FCs
(
s̃,φFCs

)
, (6)

δ̂ = FCδ

(
δ̃ ,φFCδ

)
(7)

where, as usual, φFCversors , φFCh , φFCs , and φFCδ
respectively denote

the respective trainable parameters.
From the predicted joint rotations and root joint features at each

time step t, we can also compute the predicted pose X̂ t and the
corresponding pose affective features ât . We use these predicted
variables, together with the input data, to train our network according
to a curriculum schedule described in Section 5.3.

4.3 Loss Function for Training
We now describe the formulation of the loss function for training
and validating our network. The loss function should accurately
constrain the network both to learn the emotional expressions in
the input gaits as well as to follow the gaits’ trajectories in the
subsequent time steps with plausible joint motions. We capture all



Table 1: Joint Position and Rotation Errors. We compute posi-
tion error relative to the longest diagonal of the bounding box of the
characters we test, and we compute rotation errors in degrees. The
performance of our method is on par with the current state-of-the-art
in motion generation.

Method Pose Error Rotation Error

PFNN [24] 0.19 0.06

QuaterNet [54] 0.16 0.05

Emotive Gait Styling 0.12 0.04

these requirements in the loss function using four loss terms: the
motion loss, the pose loss, the pose affective features loss, and the
root joint features loss.

4.3.1 Motion loss (Lmotion)

This loss ensures that the predicted joint motions remain plausible,
i.e. close to the ground truth joint motions. To compute this loss, we
measure the angle difference between the ground truth rotations qt

and the predicted rotations q̂t on each joint at each prediction time
step t. We also add the unit norm constraint on the predicted versors
as regularization. Thus, we write the motion loss as

Lmotion := ∑ j,t

∥∥∥q2e
(

qt
j

)
−q2e

(
q̂t

j

)∥∥∥2
+λversor

(∥∥∥q̂t
j

∥∥∥−1
)2

(8)

where q2e : H→ [0,2π]3 maps the versors to corresponding Eu-
ler angles, and the summation is over all the joints across all the
prediction time steps.

4.3.2 Pose loss
(
Lpose

)
The pose loss supplements the motion loss by adding an extra regu-
larization to maintain plausible predicted joint motions. We require
the predicted character poses X̂ t at each prediction time step, ob-
tained using the predicted versors q̂t

j , to be as close as possible to the
corresponding ground truth poses X t . However, we do not require
our predicted poses to follow the same trajectory as the ground truth
poses since the desired trajectory will be provided to us at test time.
We, therefore, subtract the root joint position from all the other joints
at every time step and write our pose reconstruction loss Lpose as

Lpose := ∑
t

J−1

∑
j=1

∥∥∥(X t
j−X t

0

)
−
(

X̂ t
j− X̂ t

0

)∥∥∥2
. (9)

4.3.3 Pose affective features loss (Laff)

This loss constrains the network to predict pose affective features
similar to the ones computed from the input gaits. Therefore, it
forces the network to maintain the emotional expressions in the gaits.
We compute this loss by measuring the norm difference between the
ground truth affective features at and the predicted features ât . We
write it as

Laff = ∑
t

∥∥at − ât∥∥2
. (10)

4.3.4 Root joint features loss (Lroot)

This is a robust loss that we use to constrain the network to follow
the ground truth gait trajectory at the prediction trajectory. The
robustness ensures that the prediction follows sharp turns and bends
in the trajectory without smoothing out the foot joint movements.
We compute this loss by measuring the L1 norm difference between
the ground truth root joint features h, s, and δ , and the predicted
features ĥ, ŝ, and δ̂ given by our network. We write it as

Lroot = ∑
t

∥∥∥[ht ;st ;δ
t]−[ĥt ; ŝt ; δ̂

t
]∥∥∥

1
. (11)

Figure 5: Emotional expressions and transitions. Each row shows
four snapshots of synthesized gaits in temporal sequence from left to
right. The top two rows show gaits with single emotions. The bottom
row shows gaits transitioning from one emotion to another.

4.3.5 Foot contact loss (Lft ct)

We also require the generated characters to walk naturally without
any foot sliding. Therefore, we add a robust L1 norm loss to constrain
the heel and toe positions of the generated character to match the
ground truth heel and toe positions. The robustness ensures that the
prediction follows sharp turns and bends in the trajectory without
smoothing out the foot joint movements. We write this loss as

Lft ct = ∑
t

∥∥∥[lht ; ltt ;rht ;rtt]−[ ˆlh
t
; l̂t

t
; r̂h

t
; r̂tt
]∥∥∥

1
. (12)

Finally, we linearly combine all these loss terms to formulate our
overall loss function L , which we write as

L = λmotionLmotion +λposeLpose +λaffLaff +λrootLroot +λft ctLft ct (13)

where λmotion, λpose, λaff, λroot and λft ct are the corresponding
scaling terms and assign relative importance to the different loss
terms.

5 RESULTS

We show the performance of our autoregression network on the
training dataset described below. We briefly describe the training
dataset in Section 5.1 and discuss our augmented dataset in Sec-
tion 5.2. We report our training routine in Section 5.3, elaborate on
our performance benchmarks in Sections 5.4 and 5.5, and discuss
the contributions of our novel components through ablation studies
in Section 5.6. We summarize the details of integrating our setup
with the AR environment in Section 5.7. For a video demonstration
of the results, please refer to our supplementary material.

5.1 Dataset for Training

The datasets we use consist of temporal 3D pose sequences of human
gaits for different types of walking, running, and other locomotion
activities. This dataset was collected from various 3D pose sequence
datasets, including BML [41], Human3.6M [26], ICT [49], CMU-
MoCap [1], ELMD [23], and Emotion-Gait dataset [9]. All gaits
in the dataset are 240 frames long and playable at 10 fps. Due
to memory constraints, we sampled every 4th frame and used the
resultant 60 frames as input data to our network, i.e. we had T = 60
for all our data points. In total, the dataset consists of 1,835 gaits
with corresponding emotion vectors available.

We used 80% of our gait dataset for training our network, 10%
for validation, and kept the remaining 10% of the dataset for testing
the emotional-expressiveness and trajectory-following performances.
We performed this split randomly, and the network never sees the
validation and the test sets during training.



Figure 6: Comparison and Ablation Studies. (a) and (c) shows
emotive four snapshots in temporal sequence from left to right gaits
generated by our network following user-driven trajectories. (b) shows
the results at the same four time instances for QuaterNet, which has
no emotive component. (d) shows the results at the same four time
instances for our network without the affective feature component. In
this case, the gait is able to follow the trajectory, but not express the
emotions (e.g., no shoulder slouching to indicate sadness). (e) shows
the results at the same four time instances for our network without the
movement feature component. In this case, the gait is able to express
emotions, but not follow the desired trajectory.

5.2 Augmented Dataset: Synthesized Emotive Gaits

At test time, our network is able to generate predicted gaits on
trajectories it did not encounter during training. Our network is also
able to transition between different emotions on the test gaits as a
result of the learned inverse mapping from the latent representation
space of the encoder. We, therefore, use our network to augment
synthesized gaits to the Emotion-Gait benchmark datasets. We
generate gaits on 20 trajectories not present in the dataset, with 100
emotions, also not present in the dataset, on each trajectory, for a
total of 2,000 new gaits. We also perform transitions between 50
pairs of emotions on each trajectory, picking a pair of emotions from
the 100 novel ones without replacement, thus adding another 1,000
new gaits, taking the total new gaits added to 5,000.

5.3 Training Routine

We use the Adam optimizer [31] with a learning rate of 0.001,
which we decay by a factor of 0.999 at every epoch. We use the
ELU activation [8] on all the fully connected layers in the network.

Similar to Pavllo et al. [54], we use a curriculum scheduling
technique [7] to train our network. We begin training by presenting
various sequences of the input data and control features, each of
length T , to our network, and the network predicts the rotations and
translations for a single subsequent time step. This is equivalent to
having a teacher forcing ratio of 1. At every subsequent epoch E, we
decay the teacher forcing ratio by β = 0.995, i.e. with probability
β E , we supplement the data and controls at each input time step
with the network’s predicted data and controls at that time step.
In other words, we progressively expose the network to more and
more of its own predictions to make further predictions. Curriculum
scheduling thus helps the network gently transition from a teacher-
guided prediction routine to a self-guided prediction routine, which
significantly speeds up the training process.

We train our network for 500 epochs, which takes around 18 hours
on an Nvidia GeForce GTX 1080Ti GPU with 12 GB memory. We
use 90% of the available data for training our network, and validate
its performance on the remaining 10% of the data. We also observed
that our network performs well for any values of the scaling terms
in Equation 13 between 0.5 and 2.0. We used a value of 1.0 for all
of the performances reported in our experiments in Section 5.4.

Figure 7: Time to generate emotive gaits: We highlight the gener-
ation and rendering time for emotive gaits on a pair of GPUs. The
average time per agent per frame decreases, as we increase the
number of virtual agents.

5.4 Performance Benchmarks
We note here that methods generating motions with discrete styles
test generalizability by providing their network with novel discrete-
style labels not seen during training [30, 42], as opposed to ranges
in the styles. Our network, on the other hand, learns the mapping
between gaits and the underlying continuous space of emotions,
rather than the mapping between the gaits and annotated emotions
in the training samples. As a result, we test the generalizability of
our network by generating gaits corresponding to continuous ranges
of emotion vectors not seen during training. In order to benchmark
our network on its ability to generalize to these continuous ranges of
emotions, we perform experiments on emotion expressiveness and
emotion transitions.

5.4.1 Emotion Expressiveness
We randomly pick gaits from the test set and extract the first 18
frames ( 1

3
rd

of the total data length) to provide as inputs to our
network. We set the associated emotion vector of the input gait
as the desired emotion, initially set a straight line as the desired
trajectory, and predict for 200 time steps. Figure 5 (top row) shows
some snapshots of the results of this evaluation. Next, we evaluate
our method on trajectories with bends and sharp turns for 200 steps
(Figure 5, middle row). We note that the generated gait maintains the
emotion of the input, and follows all the trajectories. For example,
the gait slows down while taking sharp turns and adjusts its stride
and other joint movements such that the affective features remain
similar when walking on a path with bends and sharp turns.

5.4.2 Emotion transitions
In this set of evaluations, we modify the desired emotion at each
prediction time step to be different from those in the previous time
steps, as well as the emotion vector associated with the input gait.
To track the performance of our network, we first choose a particular
emotion vector for the final prediction time step. Next, we linearly
interpolate the value of each element of the emotion vector at each
prediction time step separately, including everything from the input
vector to the vector at the final time step. We normalize the vector
at each time step to convert the values to a probability distribution
that can be passed to our network. We test the results of emotion
transition on trajectories with bends and turns for 200 time steps
(Figure 5, bottom row). We observe that our network is able to
smoothly transition between the different emotions, with no sharp
limb movement or jarring action at any time step.

5.5 Comparisons with Motion Generation
We visually compare the performance of our autoregression net-
work with QuaterNet developed by Pavllo et al. [54] in Figure 6
(rows (a) and (b)). QuaterNet is a state-of-the-art motion prediction
network, and our network builds on the core prediction framework
of QuaterNet. Since QuaterNet performs motion prediction but
not emotional expressiveness, the gaits are not able to express the
different emotions.



Table 2: Likert scales for observed pose affective features. The Likert scale response categories we provided users for the four broad
observed pose affective features. Our goal is to evaluate if different users find the Likert scale values of these features similar for the same
emotion, which would indicate these features are relevant for perceiving the emotions.

Feature Likert Scale Response Categories

Value = 0 Value = 1 Value = 2 Value = 3 Value = 4

Torso Contracted, bowed Somewhat contracted Neither contracted nor
expanded Somewhat expanded Expanded, stretched

Arms Contracted, close to
the body Somewhat contracted Neither contracted nor

expanded Somewhat expanded Expanded, away from
the body

Gait Pace Sustained, leisurely,
slow Somewhat sustained Neither sustained nor

hurried Somewhat hurried Hurried, sudden, fast

Gait Flow Free, relaxed,
uncontrolled Somewhat free Neither free nor

bound Somewhat bound Bound, tense,
controlled

We also summarize the mean pose errors relative to the scale of
the input data and the joint rotation errors in degrees as they are
produced by our method, QuaterNet, as well as prediction networks
based on alternative approaches such as the phase-functioned neural
network (PFNN) [24] in Table 1. We keep the desired emotion for
our network the same as the input emotion vector to perform a fair
comparison. We also require ground truth gaits to be available so the
prediction time steps can actually compute these errors. Therefore,
we present the first 18 frames of each data point in the test set as
inputs to both the methods and compute their predicted motions on
the trajectory of the ground truth data for the remaining 42 frames.
We notice negligible differences between the performances of the
two networks, showing that our approach is comparable to the state-
of-the-art in motion prediction. However, for predicting motion
beyond the 60 frames in the dataset, we noticed that the motions
predicted by QuaterNet eventually reduce to no movement and the
character comes to a stop, whereas both PFNN and our method can
predict plausible motions for up to 200 prediction steps.

Thus, while current motion generation methods can produce
highly realistic gaits for VAs, our method can additionally produce
emotional expressiveness for those gaits. Therefore, our method
helps improve the social presence of the VAs in an AR environment,
as we observe through user evaluations in Section 6.

5.6 Ablation Studies

We have two main contributions to the design of our autoregression
network. First, we provide the pose affective features as part of the
input and constrain the predicted pose affective features to remain
close to the corresponding ground truth during training through the
affective loss Laff (Eq. 10). This enables our network to achieve
emotional expressiveness and emotion transition on the input data.
We, therefore, remove this input component and the correspond-
ing loss function from our network and the training process and
compare the results on the experiments described in Sections 5.4.1
and 5.4.2. We observe (Figure 6, rows (c) and (d)) that the ablated
network does not maintain consistent pose affective features across
the prediction time steps for the desired emotion.

Second, our network predicts the root joint features, consisting of
the root height, the root speed, and the root orientation difference
(as detailed in Section 3.2.4) alongside the predictions for the joint
rotations. To ensure that the predicted motion follows the desired
trajectory, we constrain these predicted root joint features to remain
close to the corresponding ground truth during training through the
root joint loss function Lroot (Eq. 11). To underscore the importance
of this loss function, we remove it from our training and perform
the experiments described in Section 5.4.2 on the ablated network.
We notice (Figure 6, rows (c) and (e)) that the ablated network is
not able to follow the desired trajectory. For linear trajectories, the
predicted gaits often end up being oriented in arbitrary directions
and not facing the direction of motion. For trajectories containing
bends and turns, once the predicted gaits deviate from the desired
trajectories, the ablated network is not able to reduce the deviations
in subsequent prediction time steps.

5.7 Integration with the AR Environment
Our generative method can generate animation frames at the inter-
active rate of 40 ms per frame for 10 agents in an AR environment
(Figure 7), i.e., at 4 ms per agent per frame on average, when uti-
lizing two Nvidia GeForce GTX 1080Ti GPUs. We built the re-
altime AR demo by rigging the generated skeletons to humanoid
meshes, modifying the posed meshes to handle minor visual dis-
tortions caused by body shape mismatch, and streaming a virtual
environment containing the animated characters to the Microsoft
Hololens.

Rigging Rigging the humanoid meshes to the generated skele-
tons requires that the rest pose of the generated skeleton is not
modified to accommodate the desired mesh, as this would invalidate
the rest of the animation. Thus, the rigging process must be done
in reverse; the desired meshes must already contain a skeleton that
allows us to repose it to meet the rest pose of the generated skeletons.
We found free meshes with suitable skeletons from online 3D mesh
databases. For the demo, we chose a humanoid stick figure and
some humans from the Microsoft Rocketbox collection [21]. We
performed the rigging in Blender 2.7.

Modifications To Rig Due to the body shapes of our desired
meshes not exactly matching that of the people used to generate
the original dataset, we use Blender’s sculpt tools to iron out any
distortions. In order to make the human meshes seem less synthetic,
we used the original face bones in the meshes to create blendshapes
such as blinking, breathing (mouth), and breathing (chest), which we
activated at regular intervals. These blendshapes represent typical
human behaviors independent of bodily animations. Our generated
skeletons do not contain facial bones, thus, blendshapes are a good
option for animating the face without requiring bones.

AR Implementation We made the realtime AR demo in Unreal
4.24 due to its strong animation system allowing trivial sharing of
animation files between meshes. We created An environment in
which we show pairs of animations of specific emotions, human or
stick figure, with the meshes approximately walking along the real
ground. We used the Unreal Hololens plugin to stream the rendered
images directly to the Hololens through the Hololens’ Holographic
Remoting player, which receives images by listening on a specific IP
address. Due to the start position of the user being non-deterministic,
we also provide key inputs to reposition the animated characters in
front of wherever the user is when the key is pressed. The animations
loop in order to make it easier for the user to determine differences
in gaits and the stick figure characters are given colored materials
matching their emotion.

Animation artifacts We observe some jerkiness in the anima-
tion of the human characters in AR. The major sources of this
jerkiness are (i) jerky motion of the user wearing the HoloLens, (ii)
issues in the HoloLens software, e.g., frame rate clipping, and (iii)
using textures instead of deformable cloth materials for the low-
poly human models, which makes the jerkiness more apparent due
to aliasing. We observe much-reduced jerkiness for the textureless
stick figures in AR, and almost none when rendering the stick figures
in a purely virtual environment with a known ground plane.



Table 3: 2-sample Anderson-Darling test statistics. Based on the
statistics, we are unable to reject the null hypothesis that the intended
and perceived emotions of the gaits are samples from the same
probability distribution, except for the case of Gait 2.

Gait # Value of Statistic p-value Reject Null Hypothesis?

1 0.311 > 0.25 Not able to

2 2.111 0.04 With 96% confidence

3 0.311 > 0.25 Not able to

4 −0.615 > 0.25 Not able to

5 −0.615 > 0.25 Not able to

6 −0.611 > 0.25 Not able to

7 −0.069 > 0.25 Not able to

8 −1.081 > 0.25 Not able to

6 USER EVALUATION

We conducted a web-based user study with our generated emotive
gaits to test the following null hypothesis:
The emotion vector used as input to generate each gait, and the emo-
tion vector obtained by taking the arithmetic mean of the emotion
vectors perceived by all the users from that generated gait, are two
samples of the same statistical distribution.

In other words, the distribution of emotions we intend for a gen-
erated gait is statistically similar to the distribution of emotions
perceived by the observing users. We also obtain the values of the
pose affective features observed by the users from the generated
gaits on a five-point Likert scale (LS) to validate our choice of
pose affective features and emotional expressiveness of the VAs in
Section 3.2.3.

6.1 Procedure
The study was divided into three sections. Each section took three
to four minutes to complete on average, and the entire study lasted
for around ten minutes on average.

In the first section, we showed the users ten-second clips of eight
randomly chosen generated gaits, one at a time, and asked them to
report the emotion they perceived from each of those gaits. Users
could report multiple emotions. For example, if one gait looked less
happy to the user than another (but not necessarily sad), then the
user could potentially mark that gait as both happy and neutral.

In the second section, we again showed the users ten-second clips
of six randomly chosen generated gaits, one at a time. However, in
this section, we performed emotion transitions on the generated gaits,
so the final emotions were different from the initial ones. We asked
the users to report the initial and the final emotions they perceived
from these gaits, with the option to report multiple emotions.

In the third section, we showed the users ten-second clips of the
same eight generated gaits from the first section, one at a time, and
asked them to report the observed values or intensities of four broad
pose affective features on a five-point LS. The four pose affective
features we chose to ask are inspired by the critical features identified
in the study by Roether et al. [66]. We summarize the scales for each
of the four features in Table 2.

6.2 Participants
Since emotion perceptions are influenced by numerous social and
cultural factors, we invited participants from diverse demographics
to draw useful conclusions. We had 102 participants in total, of
which 58 were male and 44 were female. 31 male and 26 female
participants were in the age group of 18-24. 25 male and 14 female
participants were in the age group of 25-34. 2 male and 4 female
participants were above 35. Based on the overall test statistics, we
did not find any noticeable difference in the emotions perceived from
the generated gaits across the different sexes and age groups.

6.3 Analysis
We analyze the results on single emotions (section 1), emotion
transition (section 2), and pose affective features (section 3). Finally,

Figure 8: Distribution of user votes for the broad pose affective
features in gaits from different emotions. We can observe different
distinct modes for the different emotions, indicating that the pose
affective features vary between different emotions and are consistent
across users for a given emotion. The values in the horizontal axis
correspond to the Likert scale values in Table 2.

we report the perceived naturalness of the gaits by the users and
miscellaneous analyses in “other feedback”.

6.3.1 Single Emotions
Given the perceived emotions from the first section of the user
study, we plot the normalized perceived emotions for eight randomly
chosen gaits, as well as the corresponding normalized intended
emotions of the generated gaits, in Figure 9. The emotions are
denoted as four-component vectors as described in Section 3.2.2.
We perform l1 normalization so that each component of the emotion
vector represents the intensity of the corresponding emotion.

For each gait, we perform the 2-sample Anderson-Darling
test [69] on the null hypothesis that the set of probability values
of the perceived emotions and the set of probability values of the
intended emotions are samples of the same underlying distribution.
Table 3 summarizes the test statistic and the corresponding p-values
for each of the eight gaits in Figure 9.

As we can observe from Table 3, we cannot reject our null hy-
pothesis for seven of the eight gaits. This suggests strong statistical
evidence that the intended and perceived emotions are statistically
similar for those seven gaits. In Gait 2, where we reject the null
hypothesis, the intended emotion was fully happy, but the observers
mainly perceived it as either happy or neutral, indicating that the
intensity of happiness did not come across to some of the observers.

6.3.2 Emotion Transition
We performed a similar 2-sample Anderson-Darling test [69] for
each of the initial and the final intended and perceived emotions, and
were unable to reject the null hypothesis in 10 out of the 12 gaits
we tested with. This again provides strong statistical evidence that
the intended emotions for the gaits and the corresponding perceived
emotions are statistically similar.

In one rejected case, the initial emotion was predominantly angry
while the final was predominantly happy, but many observers indi-
cated that both the initial and the final emotions were neutral. In the
other case, the transition was from predominantly sad to predomi-
nantly happy, but many observers reported the gait to be going from
sad to neutral. We hypothesize two possibilities for the mismatches:

• the intensities of the initial and final emotions did not come
across in the generated gaits,



Figure 9: Sets of normalized intended and perceived emotion vectors. As we can observe from the plots and the statistics in Table 3, except
for Gait 2, the intended and perceived emotions of the gaits cannot be determined to belong to separate statistical distributions.

• the observers did not expect the gait to transition between
extreme emotions such as angry to happy or sad to happy in
the ten-second span of the clip, hence opted for choices they
found more reasonable.

6.3.3 Pose affective features
Our goal here is to validate the usefulness of the pose affective
features we use to train our network, as well as the emotional expres-
siveness of the VAs through these pose affective features. However,
evaluating the values of angles and ratios is out of scope for a user-
study. We, therefore, opted to measure the user-observed LS values
or intensities of the broad pose affective features that we used to
formulate our geometric features. A good test is to verify if the
observed intensities of these broad pose affective features are statis-
tically consistent across different users. If this is verified, it justifies

• basing the geometric features on these broad features,
• the VAs are able to clearly express the different emotions

through different LS values of the pose affective features.
We show the distribution of the fraction of users that marked each

particular intensity of the four broad pose affective features for each
of the single intended emotions in our study in Figure 8. The values
in the horizontal axis correspond to the LS values in Table 2. From
this figure, we can observe different distinct modes in the distribution
for the different intended emotions. For example, the mode for the
torso is at “contracted, bowed” (0) for sad, while it is concentrated
more around “somewhat expanded” (3) and “expanded, stretched”
(4) for happy. For angry, the users observed it to be less expanded
than happy overall, but less than 10% found it to be contracted. For
neutral, there is a clear mode at “neither contracted nor expanded”
(2). These statistics show that the users perceived the VAs to have
clear preferences of the different intensities of the pose affective
features when expressing different emotions.

We also perform a k-sample Anderson-Darling test 3 for each
gait and each of the four broad affective features (and k being the
number of users) on the null hypothesis that all the user-provided
values are from the same underlying distribution. We fail to reject
the null hypothesis for all the four broad features in all the gaits, thus
indicating strong statistical evidence that the observed intensities are
consistent across different users.

6.3.4 Other Feedback
We asked the users to mark out of five how natural and smooth they
felt the animations to be, with one indicating “not natural at all”,
three indicating “satisfactory”, and five indicating “very natural”.
To establish a baseline, we asked the users to similarly marking the

corresponding source motions as well. For our generated animations,
22% of the users marked five, 43% marked four, 24% marked three,
7% marked two, and 4% marked one. Thus 89% of the users marked
at least three, i.e., found the naturalness in the generated gaits to be
satisfactory. By contrast, for the source motions, 58% of the users
marked five, 35% marked four, and 7% marked three.

In the videos we sent out to the users, we used a moving camera
so that the user was always looking straight at the virtual agent as
it walked on different trajectories. 30% of the users reported being
distracted by this moving camera during the study. Therefore, we
plan to use a fixed camera in our subsequent studies.

7 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

We present a novel, learning-based method to synthesize and tran-
sition between emotive gaits. Our emotion model is based on a
linear combination of four widely-used categorical emotions and
we present a network architecture that uses affective features and
movement features. Our algorithm can generate emotive gaits that
follow a given trajectory at interactive rates and develops a transition
scheme to switch between gaits with different emotions. We have
shown the results on gaits collected from open-source datasets and
discussed our procedure for developing VAs with these gaits in an
AR environment. We have also reported our observations from a
web-based user study to conclude that our generated gaits looked
natural, as well as had the desired emotional expressiveness. Lastly,
we release an augmented dataset of emotive gaits.

Our work has some limitations. Our approach can generate gaits
of various emotions for one person at a time; it would be useful to
generate gaits for a group of pedestrians in a crowd. Our formulation
only considers a linear space of four emotions and we would like to
extend our emotion representation to encompass more emotions in
the arousal space and in the broader VAD space [44]. The fidelity of
our synthesized gaits is limited by the number of gaits and emotion
labels available in the original database used by the network for train-
ing. To improve the performance and generate more natural-looking
emotive gaits, we need larger datasets that account for individual,
social, and cultural diversities. Moreover, our approach is only based
on low-level affective and movement features, and it would be useful
to model higher-level information corresponding to the environment
and context. Furthermore, we would like to combine emotive gaits
with other cues corresponding to facial expressions or gestures and
use multiple modalities.
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